UNIVERSI Centro Universitario

Universidad de Guadalajara

Centro Universitario de Ciencias Biológicas y Agropecuarias

IDENTIFICACIÓN DE POBLACIONES DE TEOCINTLE (Zea spp.) ÚTILES PARA EL MEJORAMIENTO DEL RENDIMIENTO DE GRANO EN MAÍZ (Zea mays L.)

Tesis que para obtener el grado de

Maestro en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas

Presenta

Abraham Guerrero Corona

Director

Lino De la Cruz Larios

Zapopan, Jalisco

15 de Julio de 2016

Universidad de Guadalajara

Centro Universitario de Ciencias Biológicas y Agropecuarias

IDENTIFICACIÓN DE POBLACIONES DE TEOCINTLE (Zea spp.) ÚTILES PARA EL MEJORAMIENTO DEL RENDIMIENTO DE GRANO EN MAÍZ (Zea mays L.)

Por

Ing. Abraham Guerrero Corona

Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas

Aprobado por:

Dr. Lino De la Cruz Larios Director de Tesis e integrante del jurado	Fecha
Dr. José de Jesús Sánchez González Asesor del Comité Particular e integrante del jurado	Fecha
Dr. José Ron Parra Asesor del Comité Particular e integrante del jurado	Fecha
Dr. Eduardo Rodríguez Guzmán Asesor del Comité Particular e integrante del jurado	Fecha
Dr. Fernando Santacruz Ruvalcaba Asesor del Comité Particular e integrante del jurado	Fecha

Dedicatoria

A mis padres Imelda Corona Jiménez y Abraham Guerrero Plasencia por todo su amor y dedicación a su familia y por haber forjado a sus hijos como personas de bien.

A mis hermanos María Ampelia y Juan Pablo por su apoyo incondicional, por ser buenos consejeros y estar conmigo en los momentos buenos y también en los difíciles.

A mis abuelos maternos, Teresa Jiménez Ortega por todos sus valores que me ha transmitido, y Pablo Corona Acosta que con su ejemplo me ha inculcado una pasión por la agricultura.

A mis abuelos paternos, Ampelia Plasencia Velázquez por su ejemplo de fortaleza y sus sabios consejos, y Abraham Guerrero Ruelas por enseñarme el valor del trabajo y el progreso siempre será un guía para mí que llevo en mi corazón.

A mi novia Maura Guadalupe Mendoza Cano por todo su amor, cariño, comprensión, paciencia y apoyo en esta etapa de superación personal tan importante en mi vida.

Agradecimientos

Al Dr. Lino De la Cruz Larios por ser un excelente profesor que aporta todos sus conocimientos teóricos y prácticos siempre de manera eficaz, le agradezco por creer en mí, apoyarme y dirigir mi desarrollo profesional. Por ser un gran amigo que admiro y respeto mucho, muchas gracias.

Al Dr. José de Jesús Sánchez González por su apoyo y confianza tan valiosos que me permitieron desarrollar y culminar este trabajo de investigación, es una gran persona ejemplar que admiro y estimo mucho, por su vasta experiencia y conocimientos que me ha transmitido.

Al Dr. José Ron Parra por ser un excelente profesor que me apoyo durante este trabajo de investigación, por sus excelentes observaciones y aclaraciones de todas mis dudas en el proceso de mi formación profesional.

Al Dr. Eduardo Rodríguez Guzmán por su amistad, apoyo, comentarios y observaciones que me permitieron afinar la culminación de este trabajo de investigación, muchas gracias.

Al Dr. Fernando Santacruz Ruvalcaba por sus comentarios y observaciones que me ayudaron a desarrollar y mejorar el trabajo de esta tesis, muchas gracias.

Al Ing. Oswaldo Iñiguez Ramírez por su ayuda en el establecimiento de la localidad de La Soledad, y su apoyo en el manejo del cultivo y registro de datos.

A mis compañeros de maestría Diana María Rivera Rodríguez y José Alberto Sánchez Nuño les agradezco su buen compañerismo por su apoyo, amistad y comentarios, les deseo todo el éxito en su carrera profesional y saben que cuentan conmigo siempre.

A todos aquellos por sus numerosas contribuciones a esta tesis y a mi vida, han sido de inconmensurable valor.

Índice

**	Dedicatoria	I
*	Agradecimientos	.II
Índic	ce	I
Índic	e de Cuadros	.II
Índic	ce de Figuras	Ш
	ract	
I IN	ГRODUCCIÓN	. 1
1.1 (Objetivo:	. 2
1.2 H	Hipótesis	. 2
II RI	EVISIÓN DE LITERATURA	. 3
2.	1 Importancia del cultivo del maíz	. 3
2.	2 Métodos tradicionales de mejoramiento genético en plantas	. 4
	2.2.1 Características que puede ampliar el fitomejoramiento	. 4
	2.3 Teoría de la línea pura	. 5
	2.4 Endogamia de Especies Diploides	. 6
2	5 Heterosis	
	2.5.1 Medida de la heterosis	. 8
	2.5.2 Bases genéticas de la heterosis	. 8
	2.5.3 Heterosis en variedades diploides	
	6 El germoplasma exótico y su incorporación por el método de retrocruza (RC)	
	6.1 El germoplasma exótico y su incorporación por el método de poblaciones F2	
	7 Formación de una población de referencia	
2.	8 Taxonomía del teocintle	14
	2.8.1 Antecedentes del uso y aprovechamiento de las especies del teocintle para	
	transferir caracteres deseables a maíz	
2.9	9 Evaluaciones Fenotípicas	
	2.10 El diseño alfa látice.	
	IATERIALES Y MÉTODOS	
	1 Material vegetal y genético.	
	2 Formación de los híbridos no convencionales	
	3 Establecimiento de los ensayos de evaluación de rendimiento	
	5 Manejo agronómico del cultivo	
	6 Variables medidas	
	7 Análisis de datos	
	ESULTADOS	23
	1 Resultados del análisis de varianza y comparación de medias en la localidad de	
	a Soledad, Zapotlán del Rey, Jalisco, 2015T.	
	2 Resultados de análisis de varianza y comparación de medias para la localidad de	
	Salitre, San Martin Hidalgo, Jalisco, 2015T.	
	3 Resultados de análisis de varianza y comparación de medias para la localidad de	
	mpo agrícola experimental del CUCBA, Zapopan, Jalisco, 2015T	35
	4 Resultados del análisis de varianza combinado y comparación de medias de las	
	es localidades (La Soledad, El Salitre y CUCBA), Jalisco, 2015T	
	ISCUSIÓN	
	CONCLUSIONES	
	BIBLIOGRAFÍA	
VIII	APÉNDICE	വ

Índice de Cuadros

Cuadro 1. Cálculo de coeficientes de endogamia para 5 métodos de inducción de
endogamia en especies diploides
Cuadro 2. Taxonomía del teocintle
Cuadro 3. Origen de las colectas utilizadas para la formación de retrocruza dos (RC2)
de maíz-teocintle
Cuadro 4. Localidades de evaluación de los ensayos para rendimiento en Jalisco,
México
Cuadro 5. Cuadrados medios de variables medidas en la localidad de La Soledad,
Zapotlán del Rey, Jalisco, 2015T
Cuadro 6. Prueba de Dunnett para la variable rendimiento de grano en la localidad de La
Soledad
Cuadro 7. Cuadrados medios de las variables medidas en la localidad de El Salitre, San
Martin Hidalgo, Jalisco, 2015T30
Cuadro 8. Prueba de Dunnett para la variable rendimiento de grano en la localidad de El
Salitre
Cuadro 9. Cuadrados medios de las diferentes variables en la localidad del CUCBA,
Zapopan, Jalisco, 2015T36
Cuadro 10. Prueba de Dunnett para la variable rendimiento de grano en la localidad del
CUCBA
Cuadro 11. Cuadrados medios de las variables medidas en el análisis de varianza
combinado de las tres localidades, 2015T
Cuadro 12. Cuadrados medios del análisis combinado de variables medidas en dos
localidades (El Salitre y CUCBA) 2015T
Cuadro 13. Promedios de variables evaluadas de los ensayos en las tres localidades de
Jalisco, 2015T
Cuadro 14. Prueba de Dunnett de la variable rendimiento de grano en las tres
localidades
Cuadro 15. Mejores híbridos con germoplasma de teocintle del análisis combinado 54
Cuadro 16. Manejo agronómico en la localidad de La Soledad, Zapotlán del Rey,
Jalisco, 2015T
Cuadro 17. Manejo agronómico en la localidad de El Salitre, San Martin Hidalgo,
Jalisco, 2015T
Cuadro 18. Manejo agronómico en la localidad del CUCBA, Zapopan, Jalisco, 2015T.
Cuadro 19. Promedios de variables evaluadas en la localidad de La Soledad, Zapotlán
del Rey, Jalisco, 2015T 65
Cuadro 20. Promedios de variables evaluadas en la localidad de El Salitre, San Martin
Hidalgo, Jalisco, 2015T
Cuadro 21. Promedios de variables evaluadas en la localidad del CUCBA, Zapopan,
Jalisco, 2015T
Cuadro 22. Descripción de los tratamientos evaluados en la localidad de La Soledad,
Zapotlán del Rey, Jalisco, 2015T
Cuadro 23. Descripción de los tratamientos evaluados en la localidad de El Salitre, San
Martin Hidalgo, 2015T
Cuadro 24. Descripción de los tratamientos evaluados en la localidad del CUCBA,
Zapopan, Jalisco, 2015T

Índice de Figuras

Figura 1. Mapa de México y algunos países de Centroamérica con registros de presencia
de poblaciones de teocintle
Figura 2. Distribución de frecuencias de medias para rendimiento de grano de 192
tratamientos en la localidad de La Soledad
Figura 3. Distribución de frecuencias de las medias para floración masculina y femenina
de 192 tratamientos en la localidad de La Soledad
Figura 4. Distribución de frecuencias de las medias para altura de planta y de mazorca
de 192 tratamientos en la localidad de La Soledad
Figura 5. Distribución de frecuencias de las medias para acame de raíz y de tallo de 192
tratamientos en la localidad de La Soledad
Figura 6. Distribución de frecuencias de medias para rendimiento de grano de 192
tratamientos en la localidad de El Salitre
Figura 7. Distribución de frecuencias de medias para floración masculina y femenina de
192 tratamientos en la localidad de El Salitre
Figura 8. Distribución de frecuencias de las medias para altura de planta y mazorca de
192 tratamientos en la localidad de El Salitre
Figura 9. Distribución de frecuencias de las medias para acame de raíz y tallo de 192
tratamientos en la localidad de El Salitre
Figura 10. Distribución de frecuencias de las medias de rendimiento de grano de 192
tratamientos en la localidad del CUCBA
Figura 11. Distribución de frecuencias de medias para floración masculina y femenina
de 192 tratamientos en la localidad del CUCBA
Figura 12. Distribución de frecuencias de las medias para altura de planta y mazorca de
192 tratamientos en la localidad del CUCBA
Figura 13. Distribución de frecuencias de las medias para acame de raíz y tallo de 192
tratamientos en la localidad del CUCBA
Figura 14. Distribución de frecuencias de las medias de rendimiento de grano de 192
tratamientos en las tres localidades (análisis combinado)
Figura 15. Distribución de frecuencias de las medias para floración masculina y
femenina de 192 tratamientos en las tres localidades
Figura 16. Distribución de frecuencias de las medias para altura de planta y mazorca de
192 tratamientos en las tres localidades
Figura 17. Distribución de frecuencias de medias para acame de raíz y tallo de 192
tratamientos en las tres localidades

Resumen

Las especies silvestres del género Zea, poseen gran diversidad fenotípica y genotípica la cual se puede heredar dentro y entre poblaciones. En maíz (Zea mays L.) se ha demostrado el potencial del germoplasma exótico para mejorar caracteres. Los teocintles, ancestros del maíz, se clasifican dentro del género Zea que contiene nueve taxa, separadas en dos secciones y seis especies; la sección Luxuriantes: Zea diploperennis, Zea perennis, Zea luxurians, Zea vespertilio y Zea nicaraguensis; y la sección Zea que corresponde a Zea mays con subespecies: huehuetenanguensis, mexicana, parviglumis y mays para el maíz cultivado. El teocintle se distribuye en México y Centroamérica desde Chihuahua hasta Costa Rica, en diversas condiciones de climas y suelos. Entre los caracteres de interés agronómico que pueden transferirse del teocintle al maíz destacan: rendimiento de grano, resistencia a plagas y enfermedades, calidad productiva, tolerancia a condiciones de sequía e inundación, etc. Para evaluar el potencial del germoplasma de teocintle en maíz, se realizaron cruzas de prueba (verano 2014, invierno 2014-2015), con 180 familias de segunda retrocruza (RC2) CML311teocintle (progenitores machos), por la línea pura LUG282 (progenitor hembra) para formar híbridos. Posteriormente se establecieron los ensayos de evaluación en tres localidades de Jalisco (verano 2015): El Salitre (San Martín Hidalgo), CUCBA (Zapopan) y La Soledad (Zapotlán del Rey), utilizando un diseño experimental alfa látice. De los 192 híbridos 180 pertenecen al complejo maíz-teocintle y 12 corresponden a los testigos. Las variables evaluadas fueron: vigor, floración masculina, floración femenina, altura de planta, altura de mazorca, número de plantas, acame de raíz, acame de tallo, número de mazorcas, mazorcas dañadas, calificación de mazorca, peso de mazorcas, peso de grano y rendimiento de grano. En las tres localidades hubo híbridos (LUG282xRC2) que superaron al híbrido testigo de referencia (LUG282xCML311), siendo las fuentes recombinantes con Zea mays ssp. parviglumis las que tendieron más a incrementar el rendimiento de grano de los híbridos; mientras que Zea diploperennis de Huajicori, Nayarit aporto mayor precocidad y menor porte de planta.

Abstract

The genus Zea has a great phenotypic and genotypic diversity; which can be inherited within and among populations. In maize (Zea mays L.) has been shown the potential ability of exotic germplasm to expand characters. Teosinte species, ancestors of corn, are classified in the genus Zea, which contains nine taxa, divided into two sections and six species; section Luxuriantes: Zea diploperennis, Zea perennis, Zea luxurians, Zea vespertilio and Zea nicaraguensis; and Zea section which corresponds to Zea mays with subspecies: huehuetenanguensis, mexicana, parviglumis and mays for domesticated maize. Teosinte is distributed in Mexico and Central America from Chihuahua to Costa Rica, in different conditions of climate, soils, altitudes and latitudes. The agronomic traits of interest which can be transferred from teosinte to maize include: grain yield, resistance to pests and diseases, productive quality, tolerance to drought and flooding conditions, etc. To evaluate the potential of teosinte germplasm on maize, test crosses was made with 180 families in backcross two (BC2) CML311-teosinte (male parent), by the inbred line LUG282 (female parant) to form hybrids. Subsequently settled evaluation trials at three locations in Jalisco (summer 2015): El Salitre (San Martin Hidalgo), CUCBA (Zapopan) and La Soledad (Zapotlan del Rey); the experimental design was used is Alpha lattice of 12x16 incomplete blocks at random. From 192 hybrids, 180 belong to complex maizeteosinte, and 12 controls in addition. The determined variables were: vigor, male and female flowering, plant height, ear height, number of plants, root lodging, lodging stalk, number of ears, damaged ears, score to ear, ears weight, grain weight and grain yield. At three locations there were hybrids (LUG282xRC2) that exceeded to hybrid reference control (LUG282xCML311), being the sources recombinant with Zea mays ssp. parviglumis which tended more to increase the grain yield of hybrids; While Zea diploperennis from Huajicori, Nayarit, bring greater earliness and smaller plant.

I INTRODUCCIÓN

El maíz (Zea mays L.) es una planta cultivada alrededor del mundo por su gran importancia en la alimentación humana y animal, y también por formar parte de una amplia industria de productos como almidones, aceites, barnices, pinturas, plástico, jabones, entre otros (Song et al., 2012). En los últimos años, México ha tenido un déficit del 28.1% en su consumo nacional, ya que se producen anualmente alrededor de 21.5 millones de toneladas de este grano, mientras que se consumen 30 millones de toneladas (Núñez, 2013). Por lo tanto, para seguir produciendo variedades híbridas de maíz de alto rendimiento de grano, de buena calidad y resistencia a enfermedades, una alternativa es explorar nuevas fuentes de germoplasma con potencial para ampliar las fuentes genéticas actualmente utilizadas en los programas de mejoramiento genético, una alternativa es el teocintle, pariente silvestre más cercano al maíz, ambos pertenecen al género Zea; las especies y subespecies de teocintle presentan una gran variación fenotípica y genotípica; comprenden especies anuales y perennes diploides (2n=20) y tetraploides (2n=40); su distribución natural ocurre en áreas tropicales y subtropicales de México, Guatemala, Honduras, Costa Rica y Nicaragua; estas plantas crecen en una amplia variedad de condiciones ecológicas, desde regiones cálidas y húmedas hasta valles fríos y secos; se pueden encontrar en los campos de maíz, a orillas de pequeños arroyos, en bosque abierto sobre laderas rocosas de montañas y como constituyente de las cubiertas herbáceas en áreas de pastizales. Su gran adaptación a diversas condiciones ecológicas especiales, representa un gran potencial para el descubrimiento de alelos nuevos, no presentes en el maíz moderno; por ejemplo, Zea luxurians y Zea nicaraguensis que se distribuyen en áreas en que la precipitación pluvial es de 2000 mm anuales, poseen genes de resistencia a inundaciones con base en la capacidad de formar aerénquima en las raíces (Mano y Omori, 2007; Mano et al., 2009; Mano et al, 2013); por lo tanto, este germoplasma ha probado ser una opción para conferir resistencia al maíz al exceso de humedad.

Desde la década de 1950 se ha evaluado el potencial de ciertas especies de teocintle en el mejoramiento del maíz, ofreciendo cierta resistencia a enfermedades y factores adversos (Reeves, 1950; Sehgal, 1963; Cohen y Galinat, 1984; y Casas *et al.* 2003). Existen varios casos favorables en cuanto al uso de teocintle en el mejoramiento genético del maíz con especies anuales y perennes (Nault, 1983; Rich y Ejeta, 2008).

Adicionalmente, se ha comprobado que el germoplasma de teocintle puede ser transferido al maíz y persiste en las generaciones avanzadas de retrocruzamiento (Rincón,

2001; Kato y Sánchez, 2002). Wang *et al.* (2008) incorporaron germoplasma de *Zea mays* ssp. mexicana, a la línea élite Ye515 de China. Después de dos retrocruzas y cuatro ciclos de autofecundación se obtuvieron líneas recobradas las cuales mostraron gran variación con respecto a caracteres de mazorca, resistencia a diversas enfermedades y composición química del grano.

Los teocintles son un germoplasma valioso para el mejoramiento del maíz, principalmente en caracteres agronómicos y de rendimiento de grano al ser transferido el grrmoplasma al maíz, por lo que se plantean los objetivos e hipótesis siguiente:

1.1 Objetivo:

Identificar la variación genética existente en poblaciones de teocintle para su aprovechamiento en el mejoramiento del rendimiento de grano del maíz.

1.2 Hipótesis

La incorporación de germoplasma de teocintle a maíz, produce variación genética aprovechable para aumentar el rendimiento de grano en los híbridos.

II REVISIÓN DE LITERATURA

2.1 Importancia del cultivo del maíz

El maíz (*Zea mays* L.) es uno de los cultivos más diversificados y expandidos alrededor del mundo, el cual principalmente es utilizado para la alimentación humana, animal, y producción de almidones; también es un insumo para la elaboración de aceites, barnices, pinturas, plástico, jabones, entre un gran número de productos. Básicamente, requiere periodos cortos, temperaturas de hasta 8°C. Se adapta a casi todos los tipos de suelo, siempre y cuando se pueda satisfacer su alta demanda de agua y horas de sol.

En México representa el principal cultivo, debido a su importancia en la ingesta alimenticia diaria de la población. No obstante, de las más de 30 millones de toneladas que se consumen anualmente, sólo 21.5 millones son producidos nacionalmente. Es decir, México posee un déficit en cerca de 28.1% del consumo nacional aparente.

De acuerdo con los datos del United States Department of Agriculture (USDA), a nivel internacional, México ocupó durante los años 2007 y 2008 el cuarto lugar en producción, llegando hasta el séptimo en el 2011, debido a la intensa sequía y heladas que se presentaron en dicho año. En contraste, gracias a mejores condiciones climatológicas observadas en el 2012 se recuperó la quinta posición en volumen de producción mundial. Los tres principales productores por volumen de producción del grano son Estado Unidos, China y Brasil. Se destaca China por el mayor dinamismo en su cosecha, con una Tasa Media Anual de Crecimiento (TMAC) de 6.4%, entre el 2007 y el 2012. Por su parte, Estados Unidos presentó una TMAC de -3.7%, dejando de lado la afectación de la sequía severa del 2012, su tendencia decreciente es constante. El promedio de producción de los últimos tres años en Estados Unidos es 9.0% inferior a la producción del 2007.

La TMAC de México es de -1.8%, en los últimos seis años. Si bien la producción estimada de 21.5 millones de toneladas del 2012 es la más alta de los últimos cuatro años, no se puede negar la tendencia decreciente. Ante la disminución en la cosecha del principal productor mundial, en México se deben canalizar mayores esfuerzos para incrementar la producción nacional a través del incremento en los rendimientos, uso de insumos de mayor calidad y prácticas productivas sustentables (Núñez, 2013).

2.2 Métodos tradicionales de mejoramiento genético en plantas

El desarrollo de variedades mejoradas ha contribuido al incremento de la productividad y de la calidad de las plantas utilizadas para obtener alimentos, fibras, o valor estético. La selección de la variedad apropiada es una de las decisiones clave que un productor agrícola debe tener en cuenta. La variedad definirá los límites del desempeño que pueda alcanzar en cualquier ambiente.

El fitomejoramiento es el arte y la ciencia del mejoramiento genético de las plantas ha sido parte de la agricultura desde que los primeros humanos seleccionaron un tipo de planta o semilla en vez de otra, en lugar de tomar al azar lo que la naturaleza les proveía. La selección preferencial ajustada a las necesidades humanas particulares resulto en un amplio rango de tipos de plantas cultivadas dentro de cada especie. Hubo variaciones en tiempo de cosecha, tamaño y color de semillas y plantas, y sabor de los productos. Cada productor que contribuyo a la selección de un tipo particular de planta fue un practicante del fitomejoramiento.

La importancia del fitomejoramiento ha cambiado relativamente a través del tiempo. La habilidad de una persona para identificar visualmente las semillas o plantas más deseables fue la única herramienta disponible en los inicios de la selección de plantas. Se observaba la apariencia o el fenotipo de una planta, para saber si debería ser seleccionada. El acto de seleccionar visualmente plantas deseables permanece como una parte del fitomejoramiento. Sin embargo, ahora es posible planear un programa efectivo de mejoramiento genético basado en información científica. El entendimiento de la heredabilidad facilita el desarrollo de la variabilidad genética útil y la selección de individuos superiores. La efectividad del fitomejoramiento se incrementará tanto como la investigación científica expanda nuestro conocimiento de las bases genéticas del desarrollo de las plantas (Fehr, 1993).

2.2.1 Características que puede ampliar el fitomejoramiento

El principal objetivo del fitomejoramiento es mejorar ciertas características de una especie que contribuya a incrementar su valor económico. Las partes de una planta que pueden tener valor económico son las hojas, tallos, raíces, flores, frutos o semillas. Hay una gran lista de características consideradas por los fitomejoradores, pero los siguientes caracteres son de importancia primaria en el mejoramiento de muchas especies de cultivos: rendimiento, resistencia a plagas, composición de la semilla, calidad de forraje,

tolerancia a estrés mineral y ambiental, adaptación a la mecanización, resistencia al acame y respuesta al fotoperiodo. (Fehr, 1993).

2.3 Teoría de la línea pura

Johanssen (1903) estudió el efecto de la selección para el caracter "peso de la semilla" en una variedad comercial de frijol llamada "Princesa". Cultivando por separado las descendencias de 19 semillas diferentes en peso, del lote original obtuvo 19 líneas puras.

Observó que:

- Cada línea mostraba un peso medio característico que variaba entre 0.35 g y 0.65 g.
- Cada línea presentaba una distribución continua normal, pero con una variabilidad menor que la que presentaba la población original de la variedad.
- Las descendencias de semillas de diferentes tamaños, de una misma línea tenían igual peso medio y éste era diferente al de otras líneas. Las variaciones de fenotipo dentro de una línea se debían al ambiente y no al genotipo.

Si partimos de una variedad autógama heterogénea (formada por distintos genotipos) éstos serán homocigóticos. Un método para mejorar esta variedad será seleccionar de entre estos genotipos homocigóticos los que sean superiores. Por ejemplo, seleccionar dentro de la variedad Princesa la línea 1, que tiene un peso promedio de 0.64 g. Sin embargo, una vez que tengamos aislada una línea pura superior, seleccionar dentro de esta línea no tiene sentido. Todas las plantas de esta línea tienen el mismo genotipo, la superioridad o inferioridad depende del ambiente. La selección de las plantas superiores dará lugar a una descendencia con un peso promedio igual al de la población original (0.64 g). Por tanto, se puede concluir que no habrá respuesta a la selección (h2= 0, R = 0).

En conclusión: Una línea pura puede definirse como la progenie de una planta única obtenida por autofecundación. En poblaciones autógamas pueden existir "n" líneas puras y una vez obtenidas, se puede seleccionar entre unas u otras, pero no tiene sentido seleccionar entre individuos de una misma línea con el mismo genotipo porque las variaciones observadas dentro de cada línea son debido a efectos ambientales. (Ramírez, 2006).

2.4 Endogamia de Especies Diploides

El grado de relación entre individuos fue descrito por Wright (1921, 1922) citado por Fehr (1993) como el coeficiente de endogamia (*F*). Más tarde, Malecot (1948) citado por Fehr (1993) definió el coeficiente de endogamia como la probabilidad de que dos alelos en un locus sean idénticos por descendencia. El valor de *F* para una población describe el nivel promedio de homocigocidad presente.

Se ha encontrado una estrecha relación en especies diploides entre el coeficiente de endogamia y el grado de depresión endogámica. Una revisión de datos experimentales en maíz permitió a Hallauer y Miranda (1981) citados por Fehr (1993) concluir que

- a) hubo una relación lineal entre el porcentaje de homocigocidad y el desempeño de caracteres cuantitativos,
- b) el método de autofecundación no da ninguna diferencia práctica en el desempeño de las líneas en un nivel comparable de endogamia,
- c) el decremento en el desempeño asociado con una reducción en el nivel de heterocigocidad fue adecuadamente descrito por la aditividad de loci desligados,
- d) los efectos de la epistasis en la depresión endogámica no parecieron ser importantes.

Existen cuatro sistemas de apareamiento utilizados para aumentar la homocigocidad en una población: la autofecundación, cruzas de hermanos completos, cruzas de medios hermanos, y la retrocruza. La autofecundación ocurre cuando los gametos macho y hembra del mismo individuo se unen para producir la semilla. El apareamiento de hermanos completos representa la cruza de pares de individuos en una población. La cruza de medios hermanos ocurre cuando plantas individuales se fertilizan al azar con el polen de una población. La retrocruza es un esquema de apareamiento en el cual los individuos de una población se cruzan a un parental en sucesivas generaciones. Los cambios en la homocigocidad (*F*) con diferentes métodos de endogamia en especies diploides están calculados en el Cuadro 1 (Fehr, 1993).

Cuadro 1. Cálculo de coeficientes de endogamia para 5 métodos de inducción de endogamia en especies diploides.

				Parental-	Recurrente (RC)
Generación-	+ autofecundación	Hermanos completos	Medios hermanos	Endogámico	No endogámico
				(F=1)	(F=0)
	$F = \frac{1}{2} (1 + F')$	$F = \frac{1}{4}(1 + 2F' + F'')$	F=1/8(1+6F'+F'')	$F = \frac{1}{2}(1 + F')$	$F = \frac{1}{4}(1+2F')$
1	$\frac{1}{2}(1+0)=\frac{1}{2}$	$\frac{1}{4}(1+2*0+0) = \frac{1}{4}$	1/8(1+6*0+0)=1/8	$\frac{1}{2}(1+0)=\frac{1}{2}$	½ (1+2*0)= ½
2	$\frac{1}{2}(1+\frac{1}{2})=\frac{3}{4}$	$\frac{1}{4}(1+2*\frac{1}{4}+0)=3/8$	1/8(1+6*1/8+0)=7/32	$\frac{1}{2}(1+\frac{1}{2})=3/4$	½ (1+2*½)=3/8
3	$\frac{1}{2}(1+\frac{3}{4})=7/8$	$\frac{1}{4}(1+2*3/8+\frac{1}{4})=\frac{1}{2}$	1/8(1+6*7/32+1/8)=39/128	$\frac{1}{2}(1+3/4)=7/8$	¹ / ₄ (1+2*3/8)=7/16
4	½(1+7/8)=15/16	¹ / ₄ (1+2* ¹ / ₂ +3/8)=19/32	1/8(1+6*39/128+7/32)=195/512	½(1+7/8)=15/16	¹ / ₄ (1+2*7/16)=15/32

^{*} F= coeficiente de endogamia; F'= coeficiente de la generación previa; F''= coeficiente de la segunda generación removida, (Hallauer y Miranda, 1981).

El valor de F para las generaciones F2 se define como 0. El porcentaje de homocigocidad asociado con cada generación de retrocruza depende en el nivel de endogamia del parental recurrente. Un parental recurrente no endogámico (F=0) se refiere a una población F2 o su equivalente, y un parental recurrente endogámico (F=1) es un individuo completamente homocigoto.

La autofecundación y la retrocruza para un parental endogámico son las formas más extremas de endogamia, seguidas de las cruzas de hermanos completos. La homocigocidad será eventualmente lograda bajo todos los sistemas de endogamia excepto por la retrocruza con un parental no endogámico. Con un parental no endogámico, el coeficiente de endogamia puede alcanzar un máximo de 0.5.

La variación en la aproximación a la homocigocidad entre los sistemas de apareamiento autohermanos, hermanos completos, medios hermanos y retrocruza está asociada con las diferencias en la oportunidad para que alelos idénticos vayan juntos. Una fijación lenta de alelos indeseables disminuye más las oportunidades para seleccionar durante la endogamia. Al elegir un sistema de endogamia, la importancia del tipo de selección debe ser comparada con la cantidad de tiempo requerido para llegar al nivel de homocigocidad deseado. (Fehr, 1993).

⁺ F= 0, para la generación F2 o plantas no endogámicas de una población de polinización libre. La generación 1 es la primera generación después de la F2.

2.5 Heterosis

Las variedades híbridas se utilizan en la producción comercial de especies de plantas. Existen tipos deseables de variedades debido a su habilidad para capitalizar la heterosis. La heterosis es la superioridad en el desempeño de individuos híbridos en comparación con sus parentales. La ocurrencia de la heterosis es común en las especies de plantas, pero su nivel de expresión es altamente variable. (Fehr,1993).

2.5.1 Medida de la heterosis

El desempeño de un híbrido en comparación con sus parentales se puede expresar de dos maneras. La heterosis del medio parental es el desempeño de un hibrido comparado con el promedio del desempeño de sus progenitores. La heterosis de alto parental es una comparación del desempeño del híbrido con el mejor progenitor en la cruza. La heterosis usualmente se expresa como un porcentaje:

Heterosis medio parental (%)= F1- $MP/MP \times 100$

Heterosis alto parental (%)= $(F1-HP)/HP \times 100$

Donde *F1*= desempeño del híbrido

MP= Promedio del desempeño de los progenitores per se (parental 1 + parental 2) /2

HP= desempeño del mejor progenitor, (Fehr, 1993).

2.5.2 Bases genéticas de la heterosis

La heterosis puede expresarse cuando los progenitores de un hibrido tienen diferentes alelos en un locus y existe algún nivel de dominancia entre estos alelos, Falconer (1981) citado por Fehr (1993). Ha habido un debate extenso concerniente a la relación entre el nivel de dominancia y la expresión de la heterosis. Las dos hipótesis que reciben mayor atención son la hipótesis de dominancia y la hipótesis de sobredominancia. De acuerdo a la hipótesis de dominancia, la heterosis es causada por una dominancia completa o parcial. En la hipótesis de la sobredominancia, el valor del heterocigoto es considerado superior al valor del homocigoto.

La diferencia entre las dos hipótesis se puede ilustrar con la cruza AAbbCC X AABBcc. Asumiendo que la cantidad del desempeño con la que contribuye el alelo A es de 10 unidades, que el B es 12, el b es 6, el C es 8, y el c es 4. Sustituyendo cada alelo por estos valores, el promedio de los alelos AA debe ser 10, de BB es 12, de bb 6, de CC 8, y de cc 4. El desempeño del parental AAbbCC debe ser cc 4. El desempeño del parental cc cc 4.

10+12+4=26. El desempeño del hibrido no se verá afectado por el alelo A ya que este alelo contribuye igualmente a la expresión de ambos progenitores y del hibrido. Si no hay dominancia, el valor para los loci Bb y Cc será el promedio de los dos alelos,

Bb=(12+6)/2=9 y Cc=(8+4)/2=6, y la no heterosis se expresará en el hibrido: AABbCc=10+9+6=25. Si hay dominancia parcial o completa presente, como se asumió en la hipótesis de dominancia, el valor del heterocigoto será más grande que el promedio de los dos alelos en un locus. Por ejemplo, asumiendo que hay dominancia parcial para Bb, la cual da un valor de 10, y para Cc, la cual da un valor de 7. El hibrido deberá expresar ambas heterosis del medio parental y alto parental: AABbCc=10+10+7=27. El máximo valor para los loci heterocigotos Bb y Cc bajo la hipótesis de dominancia es aquel logrado con la dominancia completa, BB=Bb=12 y CC=Cc=8. En este caso, el hibrido deberá expresar incluso mayor heterosis que la dominancia parcial: AABbCc=10+12+8=30.

Para la hipótesis de la sobredominancia, el valor del heterocigótico excede aquello que es posible con la dominancia completa. El valor de Bb debería ser más grande que el de Bb o bb (Bb>12), y el valor de Cc debería ser más grande que el de CC o cc (Cc>8). Si Bb=13 y Cc=9, el hibrido AABbCc deberá tener un valor de 10+13+9=32.

Existen argumentos a favor y en contra de ambas hipótesis. La hipótesis de dominancia fue propuesta por Bruce (1910), citado por Fehr (1993). La explicación de la heterosis se considera razonable porque se basa en niveles de dominancia que han sido ampliamente observados en caracteres cualitativos. En contraste, la evidencia para la expresión de la sobredominancia en caracteres cualitativos está limitada.

Se han presentado algunos argumentos contra la hipótesis de la dominancia (Hallauer y Miranda 1981). Si la dominancia completa es la máxima expresión de un heterocigoto, debería ser posible derivar un homocigoto segregante de una cruza que es igual al hibrido en su desempeño. Por ejemplo, la cruza de AAbbCC X AABBCC deberá producir una progenie F2 con el genotipo AABBCC que es igual en desempeño al hibrido AABbCc. En cultivos tales como el maíz, no se han identificado líneas puras que sean igual en rendimiento al mejor hibrido. Esta inhabilidad para obtener líneas que sean iguales en desempeño a los híbridos se cita como evidencia que está en contra de la hipótesis de la dominancia. Refutando este argumento, se ha enfatizado que la probabilidad de recobrar todos los alelos dominantes favorables en un individuo homocigoto está limitada cuando los parentales difieren para un gran número de alelos que controlan algún carácter cuantitativo, Collins (1921), citado por Fehr (1993).

Si hay dominancia completa o parcial, la distribución de frecuencias de la progenie F2 de una cruza debe estar sesgada hacia el fenotipo dominante. Con sobredominancia, se debería esperar una distribución normal. Las distribuciones de F2 para rendimiento y otros caracteres cuantitativos generalmente son normales, un hecho usado como evidencia en contra de la hipótesis de la dominancia. Refutando esta crítica a la hipótesis de la dominancia, se ha indicado que la cantidad de sesgo esperado es limitado cuando hay un gran número de loci que controlan a un solo carácter (Collins, 1921).

La hipótesis de la sobredominancia propuesta por Shull (1908) fue apoyada por East (1936) y Hull (1945), citados por Fehr (1993). El argumento primario en contra de la hipótesis de la sobredominancia es la extensa cantidad de datos que demuestran la importancia de la dominancia parcial o completa para caracteres cuantitativos y la limitada cantidad de evidencia similar para la importancia de la sobredominancia. Hallauer y Miranda (1981) revisaron los datos existentes para caracteres cuantitativos en maíz y concluyeron que la evidencia apoya a la hipótesis de la dominancia como la base genética de la heterosis.

También se ha considerado el posible rol de la epistasis en la expresión de la heterosis. La epistasis envuelve a la interacción de los alelos en dos o más loci que pueden resultar en un desempeño superior al del loci independiente. Existe evidencia para la presencia de epistasis en la expresión de caracteres cuantitativos, pero parece ser considerablemente menos importante que la dominancia (Hallauer y Miranda, 1981).

2.5.3 Heterosis en variedades diploides

En especies diploides con dos alelos en un locus, el promedio de heterosis de una cruza es mayor en un hibrido de cruza simple debido a la ocurrencia del mayor número posible de *loci* con un alelo dominante. Por ejemplo, el apareamiento de las líneas *AABBccdd X aabbCCDD* resulta en individuos de una cruza simple con un alelo dominante en cada locus, *AaBbCcDd*. Los alelos dominantes en cada uno de los cuatro loci para todos los individuos de cruza simple provee el mayor promedio de desempeño para la cruza. Un hibrido de cruza triple se produce mediante el apareamiento de un hibrido de cruza simple a un tercer parental endogámico. El promedio de la heterosis expresada por el hibrido de cruza triple depende de la frecuencia de *loci* que retienen a un alelo dominante. Esto es una función de la relación genética entre el genotipo de la cruza simple y el tercer parental. La frecuencia de loci con un alelo dominante generalmente será menor en la cruza triple que en la cruza simple. Debido a la ocurrencia de loci homocigotos recesivos

en parte de la progenie, la frecuencia de loci con alelos dominantes y el promedio de heterosis en la cruza triple es menor que en la cruza simple.

En un hibrido de cruza doble formado por apareamientos de dos cruzas simples, la frecuencia promedio de loci con un alelo dominante y la heterosis promedio deben ser menores al hibrido de cruza triple. Los alelos homocigotos recesivos en uno o más loci en parte de la progenie de este apareamiento deben reducir la heterosis promedio de la cruza (Fehr, 1993).

2.6 El germoplasma exótico y su incorporación por el método de retrocruza (RC)

Las especies cultivadas en su proceso evolutivo de domesticación realizado por el hombre, fueron separándose de sus antecesores silvestres debido a la presión de selección ejercida de unos genotipos sobre otros. Por lo tanto, hubo una diferenciación a nivel de especies y subespecies: las domesticadas y las silvestres. Estas especies emparentadas comparten muchos rasgos similares, pero se diferencian en tamaños o formas de sus frutos, flores, hojas, tallos o raíces, dependiendo del órgano vegetal que se fue modificando a través de la selección artificial. Del mismo modo, existen características positivas y negativas que se fueron perdiendo en el proceso de domesticación de las plantas cultivadas. Los ancestros silvestres de las plantas cultivadas son un germoplasma exótico que representa especial interés por ciertos caracteres positivos como resistencia o tolerancia a factores bióticos y abióticos externos, que pueden ser transferidos hacia sus parientes domesticados mediante cruzas interespecíficas.

Ventajas de incorporación de germoplasma exótico por el método de retrocruza:

Las líneas recombinantes formadas a partir de autofecundar familias en retrocruza son líneas inmortales que permiten hacer experimentos a gran escala con muchas repeticiones y en diferentes condiciones ambientales. Esto aumenta la calidad de un experimento y también permite estudiar las interacciones genotipo/ambiente.

La alta similitud genética y morfológica entre las líneas recombinantes con el parental recurrente permite hacer estimaciones precisas de caracteres. Cuando el parental recurrente es una especie cultivada, el efecto del caracter puede ser directamente extrapolado a variedades comerciales. Además, los genes responsables del caracter, se

pueden introgresar rápidamente en variedades comerciales, en comparación a los que son introgresados desde plantas de poblaciones F2.

Los genes que no se ven en las poblaciones F2 se pueden detectar en las líneas recombinantes. Hay mecanismos que podrían causar este efecto. Primero, el antecedente genético homogéneo de las líneas endogámicas de retrocruzas, comparado al de las poblaciones F2, aumentara el poder de detección de genes singulares. Segundo, algunos genotipos pueden ser sub o sobrerrepresentados en una F2, por lo tanto, su efecto es fácilmente enmascarado por otros genes. Tercero, las interacciones de epistasis entre genes desligados pueden enmascarar el efecto principal de genes singulares en poblaciones F2, mientras que en un grupo de líneas recombinantes estas interacciones no aparecen.

Desventajas de incorpración de germoplasma exótico por el método de retrocruza:

El desarrollo de un grupo de líneas recombinantes que cubra el genoma completo de especies silvestres lleva alrededor de seis generaciones, iniciando con la cruza original entre el parental recurrente y el parental de las especies silvestres (F1, RC1, RC2, RC3, RC4, y RC4S1). Comparando con una población F2, esto toma un largo tiempo antes de que el material de prueba esté listo para usarse.

Desarrollar un grupo de líneas recombinantes es una labor intensiva y costosa, ya que se deben hacer muchas cruzas.

Cuando un caracter se expresa como resultado de interacciones genéticas con genes no estrechamente ligados, el carácter ya no es detectable en las líneas recombinantes. (Jeuken y Lindhout, 2003).

2.6.1 El germoplasma exótico y su incorporación por el método de poblaciones F2

Ventajas de incorpración de germoplasma exótico por el método de poblaciones F2:

Para desarrollar una población F2 se necesitan dos generaciones o ciclos, primero se hace la cruza original, por ejemplo, entre el parental recurrente y las especies silvestres para obtener la F1; y en la siguiente generación la F1 se recombina por polinización libre para obtener la generación F2, la cual mostrará una amplia segregación de genotipos, que servirá para escanear rápidamente el material que posea los caracteres de interés, por ejemplo, de resistencia a algún patógeno.

Cuando un carácter se expresa como resultado de una interacción genética con efecto positivo, ese carácter todavía se puede detectar en algunos genotipos de la población F2.

Desventajas de incorpración de germoplasma exótico por el método de poblaciones F2:

Las poblaciones F2 que resultan de cruzas de plantas cultivadas con parientes silvestres a menudo tienen poco tamaño, menor vigor y fertilidad. Además, evaluarlas en un experimento con repeticiones es imposible, ya que el conjunto de estas plantas influiría negativamente en la calidad de los datos.

La disimilitud genética y morfológica entre las plantas de la población F2 puede influir en las medidas de los experimentos, lo que da menos precisión cuantitativa en la evaluación del caracter de interés.

Las poblaciones F2 de cruzas amplias a menudo muestran segregaciones distorsionadas que resultan en la malinterpretación de ciertos genotipos. De esta manera, los genes pueden pasar desapercibidos o sus efectos subestimados (Jeuken y Lindhout, 2003).

2.7 Formación de una población de referencia

Una población de referencia consiste en un diseño genético que permite seccionar caracteres complejos de una fuente común de mapeo, la cual ayuda a hacer más eficiente la explotación genética, genómica y el uso de las herramientas biológicas (Holland, *et al.* 2008). Para formar una población de referencia se deben realizar los siguientes pasos:

- Seleccionar diversas fuentes de germoplasma y desarrollar un grupo amplio de progenies relacionadas con un parental en común (preferentemente líneas recombinantes para obtener una colección robusta de caracteres fenotípicos),
- 2) Secuenciar completa o densamente el genotipo de las diversas fuentes de germoplasma participantes,
- 3) Genotipificar un pequeño número de marcadores moleculares de las fuentes de germoplasma y de las progenies para definir la herencia de segmentos de cromosomas desde las fuentes de germoplasma a las progenies proyectando una información altamente densa provista por los marcadores.
- 4) Fenotipificar las progenies para varios caracteres complejos, y
- 5) Conducir un análisis de asociación amplia del genoma, para relacionar caracteres fenotípicos con la información altamente densa de los marcadores en las progenies. Los objetivos del diseño de una población de referencia son los siguientes:

- 1) Capturar la diversidad genética de las fuentes de germoplasma participantes,
- 2) Explotar la recombinación ancestral,
- 3) Aprovechar eficientemente las tecnologías de secuenciación a través del diseño genético,
- 4) Generar materiales que puedan ser evaluados para caracteres agronómicos en diversos ambientes y localidades,
- 5) Desarrollar mapeos de poblaciones que tengan suficiente poder para detectar numerosos QTL (Quantitative Trait Loci: Caracteres cuantitativos) y resolverlos seccionando a nivel de genes individuales,
- 6) Poveer nuevos recursos a la comunidad.

2.8 Taxonomía del teocintle

Los teocintles están representados por el género Zea que contiene nueve taxa clasificadas en dos secciones y seis especies. La sección Luxuriantes (Doebley e Iltis) incluye a las especies perennes Zea diploperennis (Iltis, Doebley y Guzmán) y Zea perennis (Hitch, Reeves y Mangelsdorf), y a las especies anuales Zea luxurians (Durieu y Ascherson) Bird, Zea vespertilio (Gómez-Laurito) y Zea nicaraguensis (Iltis y Benz).

La sección Zea incluye a Zea mays L. dividida en las subespecies Zea mays ssp. mexicana (Schrad.) Iltis con las razas Chalco, Mesa Central, Durango y Nobogame; Zea mays ssp. parviglumis (Iltis y Doebley) con la raza Balsas, Zea mays ssp. huehuetenanguensis (Iltis & Doebley) Doebley con la raza Huehuetenango y Zea mays ssp. mays para el maíz cultivado (Cuadro 2).

Cuadro 2. Taxonomía del teocintle (Sánchez, 2011)

Sección	Taxón					
Luxuriantes	Zea luxurians					
	Zea diploperennis					
	Zea perennis					
	Zea vespertilio					
	Zea nicaraguensis					
Zea	Zea mays ssp. mexicana					
	Zea mays ssp. parviglumis					
	Zea mays ssp. huehuetenanguensis					
	Zea mays ssp. mays					
	Zea mays ssp. mays					

2.8.1 Antecedentes del uso y aprovechamiento de las especies del teocintle para transferir caracteres deseables a maíz

Con la finalidad de transferir caracteres de teocintle a líneas de maíz, Mangelsdorf (1959) realizó las primeras cruzas interespecificas en E.U.A. en la década de los 50, observando principalmente el aumento en el vigor de crecimiento y el tamaño de las plantas en la generación F1. La subespecie *Zea mays* ssp. *mexicana* ha sido el más utilizado para transferir genes de teocintle a maíz; por lo tanto, se sabe que sus poblaciones pueden ser fuentes para buscar características como rendimiento de grano (Wang et. al., 2008; Cohen y Galinat, 1984), resistencia a enfermedades fúngicas, tolerancia a suelos ácidos, sistemas de incompatibilidad (Evans y Kermicle, 2001), y de todas las especies y subespecies de teocintle esta es la que posee la mayor diversidad y distribución de ecotipos, con las razas Chalco, Mesa Central, Durango y Nobogame.

Zea mays ssp. parviglumis puede aportar mayor cantidad y calidad de proteínas al grano, tales como metioninas y zeínas no presentes en el maíz moderno (Flint-García et al. 2009). Las especies Zea perennis y Zea diploperennis son los únicos teocintles que tienen resistencia a los virus del enanismo clorótico del maíz, moteado clorótico, rayado del maíz y virus del mosaico del enanismo del maíz (Nault et al. 1982), también Zea diploperennis es una fuente de resistencia a una planta parasita del maíz que afecta grandes extensiones del África tropical y parte del Sureste Asiático (Rich y Ejeta, 2008). Mientras que las especies Zea mays ssp. huehuetenanguensis, Zea nicaraguensis y Zea luxurians, por los ambientes con altas precipitaciones donde viven, están adaptadas a resistir inundaciones mediante mecanismos como el rápido crecimiento de raíces adventicias con aerénquima durante las condiciones de anegamiento y la tolerancia a toxinas (Al y H2S) causadas por las condiciones reductoras en el suelo inundado (Mano y Omori, 2007; 2008; 2013).

2.9 Evaluaciones Fenotípicas

Para poder medir el desempeño en el nivel de éxito de una línea, variedad o hibrido que se adapte a ciertas condiciones agronómicas relevantes, es importante considerar las siguientes estrategias fenotípicas en campo:

- 1) Estimar el desarrollo del cultivo bajo condiciones de manejo en campo apropiadas,
- 2) Poder evaluar el desempeño de una población con varios ambientes objetivos,

3) Poder generar datos útiles en tiempo real sin inversiones desproporcionadas en labores e infraestructura (Holland *et al.* 2008).

2.10 El diseño alfa látice

En el diseño tradicional para la evaluación de experimentos agrícolas las unidades experimentales están agrupadas en bloques completos que cada uno contiene todos los tratamientos. Este diseño asume que la variación entre las unidades dentro de un bloque es menor que las unidades entre diferentes bloques, así, la precisión experimental se incrementa por el control del error (Steel y Torrie, 1980, citados por Barreto *et al.* 1994). También, con este tipo de diseño cada tratamiento ocurre con la misma frecuencia en cada bloque; o sea, bloques y tratamientos son ortogonales. La ortogonalidad facilita el cálculo matemático necesario para producir un análisis de varianza.

Sin embargo, cuando el número de tratamientos es grande, los bloques completos al azar y los cuadros latinos generalmente son inutilizables debido a que incrementa el tamaño del bloque y por ende también la heterogeneidad del suelo. Esto podría causar que la variación dentro de bloques sea más grande que la variación entre bloques, lo que tiende a incrementar el error experimental y disminuir la calidad en la investigación al observar diferencias estadísticas entre dos ciertos tratamientos.

En un diseño de bloques incompletos (por ejemplo, un látice) el número de parcelas por bloque (k) es menor que el número total de tratamientos (v). Un diseño de bloques incompletos se considera solucionado si las unidades de bloques están acomodadas en repeticiones completas (un grupo completo de tratamientos se obtiene poniendo juntos los bloques de una repetición). En campo, un diseño de bloques incompletos es indistinguible de un diseño de bloques completos al azar. Sin embargo, hay consideraciones prácticas que dictan que la mayoría de los diseños usados en evaluaciones agrícolas deben tener solución. Por esto, los látices nunca pueden ser menos eficientes que un diseño de bloques completos.

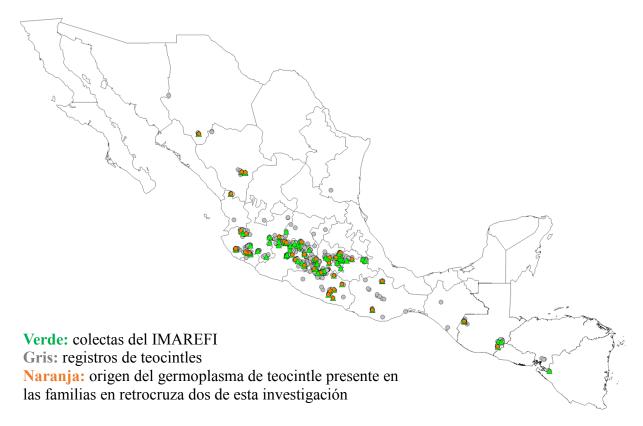
La calidad de un diseño de bloques incompletos es juzgada por el factor de eficiencia de media-armónica (Harmony-Mean Efficency Factor, HMEF), que es el radio de la varianza promedio con la que un diseño de bloques completos debe estimar las diferencias de tratamientos, y la varianza promedio con la que el diseño de bloques incompletos debe estimar estas diferencias, si el cuadrado medio del error fuera el mismo en ambos casos. El valor de la HMEF es siempre mayor a 0 y menor a 1. La diferencia mide la confusión entre tratamientos causados por el uso de bloques incompletos. Al

componer el ensayo en el campo, debemos intentar lograr la máxima homogeneidad posible dentro de cada bloque incompleto dependiendo de las condiciones del suelo, gradientes de fertilidad, humedad, pendiente, etc. La regla del pulgar para seleccionar el tamaño (número de parcelas por bloque) de un bloque incompleto debe tomar un valor que es igual o menor que la raíz cuadrada del número de tratamientos (k =... JV). Para juzgar si el arreglo de bloques incompletos fue más eficaz que el diseño de bloques completos, comparamos los errores experimentales correspondientes.

La eficiencia relativa (RE) de un diseño látice se define como el cociente entre la variación promedio de las diferencias entre los tratamientos (ignorando el uso de bloques incompletos y asumiendo que las repeticiones eran bloques completos) y la variación promedio de las diferencias entre tratamientos en el diseño de bloques incompletos (incluida la recuperación de información inter-bloque). La proporción de la RE es análoga a la definición de la HMEF, en las estimaciones anteriores que se observan del error experimental. Si el bloqueo incompleto ha tenido éxito en la eliminación de variación (es decir, si la reducción en el cuadrado medio del error compensa el efecto de la confusión causada por bloques incompletos), entonces la eficiencia relativa será mayor que 1. Como se mencionó anteriormente, el hecho de que los latices pueden volver a bloques completos si el rendimiento es menor que 1 asegura que estos nunca serán menos eficientes diseño bloques 1994). que un de completos (Barreto al. et

III MATERIALES Y MÉTODOS

3.1 Material vegetal y genético


El material original de las colectas fue proporcionado por el Banco de Germoplasma del Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) de la Universidad de Guadalajara, se utilizaron 100 colectas de especies de teocintles como progenitores masculinos para formar la F1 con la línea CML311 como progenitor femenino, posteriormente se realizaron las retrocruzas uno y dos (RC1 y RC2) con tres familias por cada F1 y tres familias con cada RC1, como progenitor femenino la línea CML311 y como progenitor masculino la F1 y la RC1 respectivamente, de estas 900 RC2 se seleccionaron 180 familias maíz-teocintle en RC2 (20%) de las cuales se describen por especie, subespecie, raza, lugar de colecta, municipio y estado (Cuadro 3). Su constitución genética corresponde a 87.5% del progenitor recurrente (línea pura CML311) y 12.5% a los progenitores donantes (especies y subespecies de teocintle) que representan la distribución y la diversidad de especies y subespecies de teocintle de México y Centro América:

Cuadro 3. Origen de las colectas utilizadas para la formación de retrocruza dos (RC2) de maíz-teocintle.

Especie/raza	Lugar de colecta	Familias*	Municipio	Estado	
Zea diploperennis	San Andrés Milpillas	9	Huajicori	Nayarit	
	San Miguel Cuzalapa	9	Cuautitlán G. B.	Jalisco	
·		0		T 1 (G)	
Zea luxurians	Las Majadas	9	Jutiapa	Jutiapa (Gtm)	
Zea mays ssp.	El Tablón	9	San Antonio	Huehuetenango	
huhuetenanguensis			Huista	(Gtm)	
Zea mays ssp. mexicana	Tarahumares	9	Guadalupe y	Chihuahua	
raza Nobogame			Calvo		
Zea mays ssp. mexicana	Potrero El Tepalcate,	9	Nombre de Dios	Durango	
raza Durango	San José de Tuitán				
Zea mays ssp. mexicana	El Pedregal	9	Ocoyoacac	Edo. de México	
raza Chalco	Opopeo	9	Salvador Esc.	Michoacán	
Zea mays ssp. mexicana	El Salteador	9	Yuriria	Guanajuato	
raza Mesa Central	Penjamillo de	9	Penjamillo	Michoacán	
	Degollado		· ·		
Zea mays ssp.	Camino Carboneras,	9	Guachinango	Jalisco	
parviglumis	El Tablillo		C		
raza Balsas	Crucero Lagunitas,	9	Tecoanapa	Guerrero	
	Saucitos-Tecoanapa				
	Los Cimientos	9	VillaPurificación	Jalisco	
	El Salado (Amate	9	Mochitlán	Guerrero	

Amarillo)							
San	Cristóbal	9	San	Jerónimo	Oaxaca		
Honduras			Coatla	n			
Huixtitla		9	Amatepec		Edo. de México		
La Lima	Lima 9 Tolimán				Jalisco		
Zacatlancillo		9	Teloloapan		Guerrero		
El Potrero		9	Huetai	mo	Michoacán		
Plan de los Timbres		9	Huitzu	ico de los	Guerrero		
			Figuer	oa			

^{*}cada 9 familias representan a una colecta en común, la cual fue el punto de partida en la formación de las familias maíz-teocintle (RC2).

Figura 1. Mapa de Mexico y algunos paises de Centroamérica con registros de presencia de poblaciones de teocintle (Torres, 2015).

3.2 Formación de los híbridos no convencionales

Para la formación de los híbridos no convencionales (180) y su posterior evaluación se utilizó como progenitor hembra la línea pura LUG282 del Instituto de Manejo y Aprovechamiento de los Recursos Fitogenéticos (IMAREFI) del CUCBA, y como progenitores machos las 180 familias en RC2; estas cruzas se realizaron durante el ciclo de verano del 2014 y el ciclo invierno 2014-2015 en el Campo Agrícola Experimental del

CUCBA. Posteriormente en ambos ciclos se cosecharon las F1 (LUG282xRC2) para establecer los ensayos de evaluación para rendimiento en el ciclo de verano de 2015.

3.3 Establecimiento de los ensayos de evaluación de rendimiento

Los ensayos de evaluación se sembraron bajo condiciones de temporal en el verano de 2015 en tres localidades del estado de Jalisco, México (Cuadro 4) con las siguientes características y fechas de siembra:

Cuadro 4. Localidades de evaluación de los ensayos para rendimiento en Jalisco, Mexico.

Localidad	Municipio	Altitud	Temperatura media anual	Precipitación media anual	Fecha de Siembra
La Soledad	Zapotlán del Rey	1530 msnm	20.1°C	819mm	06/jun/2015
El Salitre	San Martin Hidalgo	1260 msnm	20.9°C	964mm	13/jun/2015
CUCBA	Zapopan	1650 msnm	18°C	816mm	22/jun/2015

Los 180 híbridos no convencionales se compararon con el híbrido CML311xLUG282 (sin teocintle) híbrido de referencia y patrón heterótico correspondiente a los híbridos no convencionales excepto por la introgresión de las especies de teocintle. Este híbrido fue evaluado previamente para rendimiento y estabilidad en dos ciclos 2013 y 2014, bajo condiciones de temporal, también se utilizaron como testigos híbridos sobresalientes de anteriores evaluaciones (LUG282xCML311, LUG78xCML311, LUG03xCML311) e híbridos comerciales de empresas privadas (DK2027Y, CIMARRON, P3055W, DAS2362 y P3164W).

3.4 Diseño experimental

El diseño experimental para estas localidades consistió en un alfa látice de 12x16 (192 híbridos en 16 bloques incompletos, con 12 híbridos por bloque; y tres repeticiones), por lo que cada localidad se compuso de 576 tratamientos, el desarrollo de este modelo se realizó en el programa Plant Breeding Tools (PBtools) del International Research Rice Institute (IRRI).

3.5 Manejo agronómico del cultivo

La siembra de los ensayos se realizó manualmente en las localidades de La Soledad y El Salitre, mientras que en el CUCBA se utilizó la sembradora de experimentos marca *Almaco*. Se realizó una labor agronómica convencional acorde con los esquemas de manejo del cultivo de maíz específicos para cada localidad desde la siembra, fertilización, aclareo de plantas, monitoreo y control oportuno de plagas y malezas (Apéndices 16, 17 y 18). La cosecha y registro de variables se realizó manualmente en las localidades de El Salitre y el Campo Agrícola Experimental del CUCBA, en la localidad de La Soledad el ensayo se cosechó con la maquina cosechadora de experimentos marca *New Holland Twin Rotor* 88, de la que se obtuvieron las variables de cosecha de: humedad de grano, peso de grano y rendimiento en ton/ha.

3.6 Variables medidas

Las variables medidas para cada unidad experimental en las localidades, durante el ciclo del cultivo hasta la cosecha, fueron las siguientes:

Vigor v2: se realizó una calificación cualitativa del porte, uniformidad y sanidad de las plantas en la etapa de dos hojas verdaderas utilizando una escala del 1 al 10, siendo 10 excelente y 1 pésimo,

Floración masculina: se registraron los días a floración masculina cuando el 50% de las plantas tenían el 10% mínimo de antesis en sus espigas (anteras expuestas y liberando polen),

Floración femenina: se registraron los días a floración femenina cuando el 50% de las plantas tenían los jilotes con estigmas expuestos y una longitud mayor a 3 cm.,

Altura de planta: se midió en centímetros con un estadal graduado de 5 metros de longitud, desde la base del tallo hasta la inserción de la hoja bandera,

Altura de mazorca: se midió en centímetros con un estadal graduado de 5 metros de longitud, desde la base del tallo hasta el nudo donde emerge el pedúnculo de la mazorca,

Número de plantas: se contabilizo la cantidad de plantas al terminar la etapa de floraciones para determinar densidades de población,

Densidad de población: con los datos de número de plantas se ajustó la densidad de población a número de plantas/ha para cada uno de los tratamientos.

Acame de tallo: se contó el número de plantas quebradas o dobladas del tallo una semana antes de la cosecha,

Acame de raíz: se contabilizó el número de plantas con el tallo inclinado a un ángulo mayor a 45° una semana antes de la cosecha,

Número de mazorcas: se contaron las mazorcas en cada tratamiento,

Mazorcas dañadas: se contaron las mazorcas con pudriciones en cada tratamiento,

Calificación a mazorca: se hizo para el conjunto de mazorcas de cada tratamiento en una escala del 1 al 10, siendo 10 excelente y 1 pésimo,

Peso de mazorcas: se pesó en kg el total de las mazorcas para cada tratamiento,

Humedad de grano: en las localidades de El Salitre y CUCBA se midió el porcentaje de humedad en el grano utilizando el humedímetro modelo SW08120 marca *John Deere*; mientras que en La Soledad la cosechadora de experimentos registró la humedad de grano.

Peso de grano: en las localidades de El Salitre y CUCBA se desgranaron las mazorcas de cada tratamiento en una desgranadora eléctrica para pesar el grano en kg. En La Soledad la cosechadora de experimentos registro el peso de grano.

Rendimiento kg/ha: con los datos de peso de grano se ajustó el rendimiento a kg/ha para cada uno de los tratamientos (Ron y Ramírez, 1991).

3.7 Análisis de datos

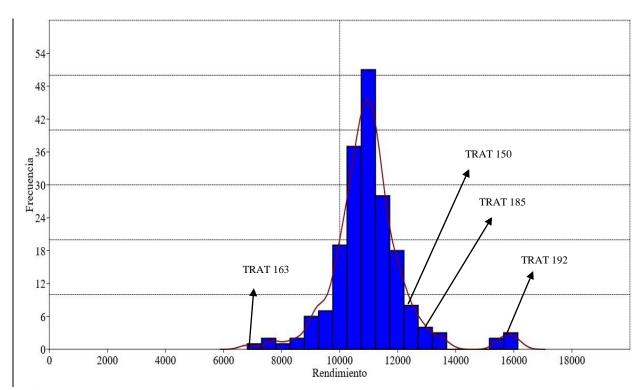
El análisis de los datos se realizó por localidad para cada una de las variables medidas con el Statistical Analysis System (SAS) con base en estadística descriptiva (proc univariate y proc means), análisis de varianza (proc GLM) además de un análisis combinado de las tres localidades (proc GLM). En los casos en que se detectaron diferencias significativas en los análisis de varianza, la comparación de medias para rendimiento de grano y características agronómicas se realizó la prueba de Dunnett con diferencia mínima significativa (DMS, 0.05 %).

El modelo lineal para el diseño de alfa-látice es: $Y_{ijl} = \mu + \tau_i + \gamma_j + \rho_{l(j)} + \epsilon_{ijl}$, en donde, Yijl son los valores fenotípicos registrados en cada unidad experimental, $\tau_{i=}$ al efecto de los tratamientos, $\gamma_{j=}$ al efecto de las repeticiones, $\rho_{l(j)=}$ al efecto de los bloques incompletos y ϵ_{ijl} al error aleatorio.

IV RESULTADOS

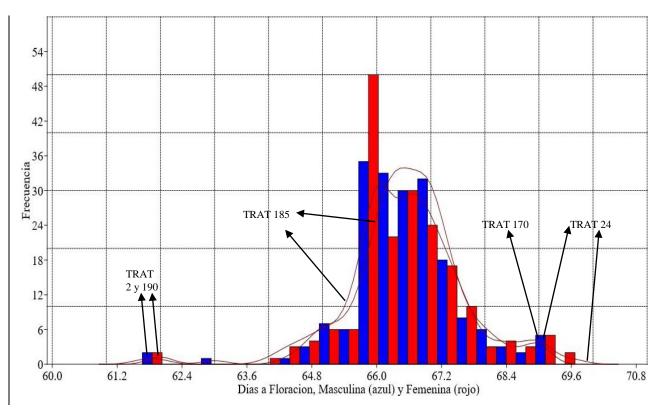
4.1 Resultados del análisis de varianza y comparación de medias en la localidad de La Soledad, Zapotlán del Rey, Jalisco, 2015T.

En el Cuadro 5 se presentan los resultados del análisis de varianza para el ensayo de evaluación establecido en la localidad de La Soledad. En donde para la fuente de variación repeticiones, se obtuvieron diferencias altamente significativas para las variables de vigor, altura de planta, altura de mazorca, acame de raíz y peso de grano; diferencias significativas en floración femenina y rendimiento de grano; mientras que en las variables floración masculina, número de plantas por parcela y acame de tallo no fueron significativos. Para la fuente de variación bloques/repeticiones existieron diferencias altamente significativas en las variables de vigor, altura de planta, altura de mazorca y acame de tallo; ninguna variable mostro diferencias significativas, y las variables floración masculina, floración femenina, número de plantas, densidad de población, acame de raíz, peso de grano y rendimiento de grano no fueron significativas. Para la fuente de variación híbridos (tratamientos) las variables con diferencias altamente significativas fueron floración femenina, altura de planta, altura de mazorca, número de plantas, densidad de población, peso de grano y rendimiento de grano, solo con significancia floración masculina y no significativas vigor, acame de raíz y acame de tallo. Las variables altura de planta y altura de mazorca fueron las únicas variables que presentaron diferencias altamente significativas en repeticiones, bloques/repeticiones e híbridos. Para la variable rendimiento de grano el coeficiente de variación fue de 11.31 %, valor aceptable en este tipo de ensayos de evaluación desarrollados bajo condiciones de temporal. En variables cuyo registro se realiza por apreciación o calificación como vigor, o las que están muy influenciadas por las condiciones ambientales como acame de raíz y de tallo, los coeficientes de variación son altos con 25.08 %, 106 % y 148 % respectivamente.


Cuadro 5. Cuadrados medios de variables medidas en la localidad de La Soledad, Zapotlán del Rey, Jalisco, 2015T.

F.V.	G.L.	Vigor	FM	FF	AP	AM	NPL	DEN	AR	AT	PGRA	REND
Repeticiones	2	6.01**	8.84ns	5.74*	2909.65**	1343.28**	1.42ns	3031715ns	3075.23**	0.91ns	6.1**	9210781*
Bloques (Rep)	45	1.33**	3.07ns	2.97ns	272.11**	219.39**	2.62ns	5602571ns	92.06ns	40.47**	0.62ns	1332480ns
Hibridos	191	1.15ns	2.93*	3.32**	206.29**	172.43**	6.31**	13492649**	102.74ns	26.46ns	2.25**	4607409.9**
C.M.E.		1.09	2.46	2.41	100.48	90.13	2.25	4811041	105.51	23.4	0.68	1550164
C.V.		25.08	2.35	2.33	3.92	6.94	3.03	3.03	106.92	148.08	11.048	11.31
Promedios		4.16	66.56	66.52	255.16	136.79	49.5	72371	9.61	3.26	7.45	11004.8

 $**= Altamente \ significativos \ al \ 0.01\% \ de \ probabilidad, \\ *= Significativos \ al \ 0.05\% \ de \ probabilidad, \\ ns= No \ significativos.$


F.V.= Fuente de variación, G.L.= Grados de libertad, C.M.E.= Cuadrado medio del error, C.V.= Coeficiente de variación, FM: Floración masculina, FF: Floración femenina, AP: Altura de planta, AM: Altura de mazorca, NPL: Número de plantas, DEN: Densidad de población estimada por parcela, AR: Porcentaje de acame de raíz, AT: Porcentaje de acame de tallo, PGRA: Peso de grano, REND: Peso de grano ajustado a kg/ha (rendimiento).

Las medias para rendimiento de los 192 tratamientos de la localidad de La Soledad se presentan en el Cuadro 17 del apéndice. En esta localidad se presentaron los mejores promedios de rendimientos con respecto a las tres localidades, los promedios fueron altos y los testigos para esta localidad fueron los mejores, el mejor tratamiento corresponde al testigo híbrido comercial P3164W (TRAT 192) con 16,139 kg/ha, el testigo de referencia LUG282xCML311 (TRAT 181) fue mejor que las cruzas de prueba con 13,666 kg/ha, el mejor tratamiento fue el 150 con germoplasma de teocintle de *Zea mays* ssp. *mexicana* raza Mesa Central (El Potrero, Huetamo, Michoacán), la media de rendimiento para esta localidad fue de 11,055 kg/ha, el 50 % de los tratamientos presentaron valores arriba del promedio (90 tratamientos), de los que 78 tratamientos son cruzas con germoplasma de teocintle, el 53 % de tratamientos provienen de la raza Balsas (B), 10 % de Chalco (C), 10 % de Mesa Central (M), 8 % de Huehuetenango, 7 de *Zea diploperennis*, 6 % de Durango (DU) y 1 % de Nobogame (N). El rendimiento más bajo lo obtuvo el tratamiento 163 con germoplasma proveniente de *Zea luxurians* (Las Majadas, Jutiapa, Guatemala) con 6,819 kg/ha (Figura 2).

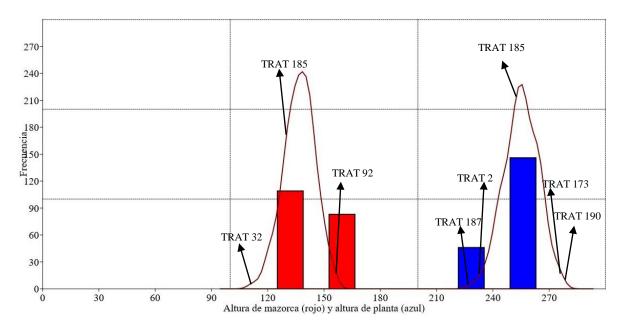


Figura 2. Distribución de frecuencias de medias para rendimiento de grano de 192 tratamientos en la localidad de La Soledad.

Para las variables agronómicas los tratamientos que mostraron menos días a floración fueron el 2 con germoplasma de *Zea diploperennis* (San Andrés Milpillas, Huajicori, Nayarit) y el tratamiento 190, híbrido comercial testigo P3055W, ambos con 62 días para floración masculina y femenina; el testigo de referencia LUG282xCML311 presento 65 y 66 días para floración masculina y femenina. Los tratamientos con mayor número de días a floración fueron la cruza 261x104 (tratamiento 24) con germoplasma de *Zea mays* ssp. *mexicana* raza Durango (El Tepalcate, Nombre de Dios, Durango) con 69 días a floración masculina y 70 días a floración femenina, y el tratamiento 170 con germoplasma de *Zea luxurians* (Las Majadas, Jutiapa, Guatemala) con 69 días a floración masculina y femenina (Figura 3).

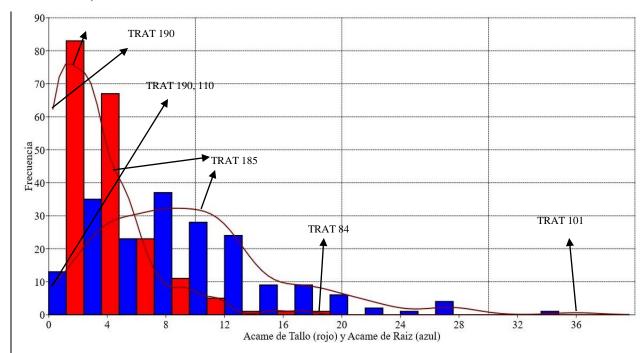

Figura 3. Distribución de frecuencias de las medias para floración masculina y floración femenina de 192 tratamientos en la localidad de La Soledad.

Figura 4. Distribución de frecuencias de las medias para altura de planta y de mazorca de 192 tratamientos en la localidad de La Soledad.

En porte de planta los tratamientos que presentaron mayor altura fueron el híbrido comercial testigo P3055W con 277 cm, y el tratamiento 173 con germoplasma de *Zea mays* ssp. *huehuetenanguensis* (El Tablón, San Antonio Huista, Huehuetenango, Guatemala) con 276 cm. Los portes de planta más bajos los presentaron el tratamiento 187

testigo (LUG03xCML311) con 228 cm, y el tratamiento 2 con germoplasma de *Zea diploperennis* (San Andrés Milpillas, Huajicori, Nayarit) con 232 cm. El híbrido testigo de referencia LUG282xCML311 presentó una altura de planta de 255 cm y una altura de mazorca de 137 cm. La mayor altura de mazorca se observó el tratamiento 92 con germoplasma de *Zea mays* ssp. *parviglumis* raza Balsas (Los Cimientos, Villa Purificación, Jalisco) con 156 cm y con porte menor de altura de mazorca lo presentó el tratamiento 32 con germoplasma de *Zea mays* ssp. *mexicana* raza Chalco (El Pedregal, Ocoyoacac, Estado de México) con 111 cm.

Figura 5. Distribución de frecuencias de las medias para acame de raíz y de tallo de 192 tratamientos en la localidad de La Soledad.

Para la localidad de la soledad solo el testigo comercial P3055W no presentó acame de raíz ni de tallo, y el tratamiento 110 con germoplasma de *Zea mays* ssp. *parviglumis* raza Balsas (San Cristóbal Honduras, San Jerónimo Coatlán, Oaxaca) presentó 0.0 % de acame de raíz y 2.01 % de acame de tallo. El testigo de referencia LUG282xCML311 presentó acame de raíz del 11% y acame de tallo del 4.5%, el porcentaje mayor para acame de raíz lo presentó el tratamiento 101 con germoplasma de *Zea mays* ssp. *parviglumis* raza Balsas (El Salado, Mochitlán, Guerrero) con 36%; mientras que el tratamiento 84 con germoplasma de *Zea mays* ssp. *parviglumis* raza Balsas (Crucero Lagunitas, Tecoanapa, Guerrero) presentó el mayor porcentaje de acame de tallo con 17.3 % (Figura 4).

Cuadro 6. Prueba de Dunnett para la variable rendimiento de grano en la localidad de La Soledad

Tratamiento	Híbrido	Origen de la fuente de Teocintle	Especie, Raza	Rendimiento (kg)
185	LUG282xCML311	CIMMYT	Zea mays (L.)	12925
40	261x120	Opopeo, Salvador Escalante, Michoacán	Zea mays ssp. mexicana, Chalco	9814***
69	261x149	El Tablillo, Guachinango, Jalisco	Zea mays ssp. parviglumis, Balsas	9776***
108	261x188	El Salado, Mochitlán, Guerrero	Zea mays ssp. parviglumis, Balsas	9755***
119	261x199	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	9593***
104	261x184	El Salado, Mochitlan, Guerrero	Zea mays ssp. parviglumis, Balsas	9465***
7	261x87	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	9456***
17	261x97	Tarahumares, Gpe. y Calvo, Chihuahua	Zea mays ssp. mexicana, Nobogame	9396***
36	261x116	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	9337***
83	261x163	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	9326***
31	261x111	El Pedregal, Ocoyoacac, Edo. de Mexico	Zea mays ssp. mexicana, Chalco	9208***
74	261x154	San Miguel Cuzalapa, Cuautitlán, Jalisco	Zea diploperennis	9183***
145	261x225	El Potrero, Huetamo, Michoacán	Zea mays ssp. parviglumis, Balsas	9148***
2	261x82	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	9130***
47	261x127	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	9060***
118	261x198	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	8966***
169	261x249	Las Majadas, Jutiapa, Guatemala	Zea luxurians	8676***
112	261x192	Sn. Cristóbal Hond. Sn. Jmo. Coatlan, Oax.	Zea mays ssp. parviglumis, Balsas	8506***
49	261x129	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	8209***
32	261x112	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	7742***
120	261x200	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	7605***
163	261x243	Las Majadas, Jutiapa, Guatemala	Zea luxurians	6819***

*** Diferencias mínimas significativas al 0.05

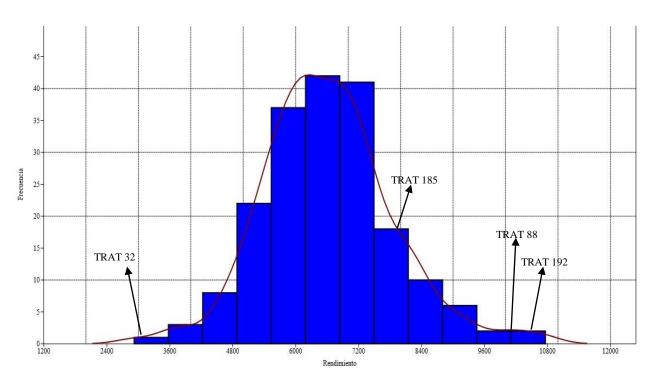
La prueba de Dunnett nos muestra los tratamientos que fueron diferentes al 0.05 % con respecto al tratamiento 185 testigo de referencia (LUG282xCML311), en donde para esta localidad ninguno de los tratamientos con teocintle fue superior. Existieron 159 tratamientos estadísticamente iguales al testigo de referencia, de los cuales 51.57 % corresponden a la raza Balsas, 10.06 % a la raza Mesa Central, 8.8 % a Chalco, 8.8 % a Zea diploperennis, 5.66 % a Durango, 5.66 % a ssp. huehuetenanguensis, 5.03 % a Nobogame y 4.4 a Zea luxurians (Cuadro 6).

4.2 Resultados de análisis de varianza y comparación de medias para la localidad de El Salitre, San Martin Hidalgo, Jalisco, 2015T.

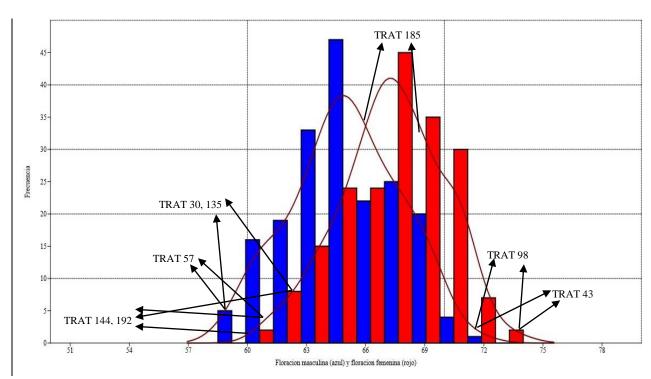
En el Cuadro 7 se presentan los resultados del análisis de varianza para el ensayo de evaluación establecido en la localidad de El Salitre. Para la fuente de variación repeticiones las variables que presentaron diferencias altamente significativas fueron: vigor, floración masculina, floración femenina, altura de planta, altura de mazorca, calificación de planta, número de plantas, densidad de población, número de mazorcas, peso de mazorcas, peso de grano y rendimiento de grano; con diferencias significativas las variables calificación a

mazorcas, acame de raíz y acame de tallo; la variable mazorcas dañadas no fue significativa. En la fuente de variación bloques/repeticiones las variables con diferencias altamente significativas fueron: vigor, floración masculina, floración femenina, altura de planta, altura de mazorca, calificación a plantas, número de plantas, densidad de población, acame de tallo, número de mazorcas y calificación de mazorcas, las variables que presentaron diferencias significativas fueron peso de mazorcas, peso de grano y rendimiento de grano, y las variables que no presentaron significancia fueron acame de raíz y mazorcas dañadas. Para la fuente de variación tratamientos fueron altamente significativas las variables floración masculina, altura de planta, altura de mazorca, calificación de planta, número de plantas, densidad de población, acame de tallo, calificación a mazorcas, peso de grano y rendimiento de grano, con diferencia significativa la variable floración femenina, y no presentaron significancia acame de raíz, número de mazorcas y mazorcas dañadas.

El coeficiente de variación para la variable rendimiento de grano fue de 18.72%, mientras que para las variables de calificación visual o altamente influenciadas por el ambiente los coeficientes de variación fueron altos, vigor (24.09%), calificación de plantas (20.89%), acame de raíz (88.15) y acame de tallo (67.33%) y mazorcas dañadas (76.24%).


Cuadro 7. Cuadrados medios de las variables medidas en la localidad de El Salitre, San Martin Hidalgo, Jalisco, 2015T.

F.V.	G.L.	Vigor	FM	FF	AP	AM	СР	NPL	DEN	AR	AT	MZ	DA	CMZ	PESM	PGRA	REND
Repeticiones	2	435.63**	273.38**	195.51**	5268.81**	1581.13**	65.01**	972.19**	2077973478**	0.23ns	51.49ns	912.67**	19.03ns	3.76*	22.64**	16.59**	34554707.1**
Bloques (Rep)	45	17.28**	43.83**	29.85**	708.85**	316.11**	1.59**	81.28**	173731819**	44.09ns	56.86**	71.35**	12.1ns	2.16**	1.57*	1.14*	2385874.1*
Híbridos	191	1.83ns	9.78**	9.5*	264.32**	198.77**	1.26**	37.98**	81181847**	48.17ns	32.77**	45.53ns	12.38ns	1.43**	1.82**	1.33**	2803902.3**
C.M.E.		1.86	6.84	7.24	151.58	103.84	0.79	26.75	57170998	39.24	21.82	38.12	10.32	0.87	0.99	0.73	1531981.4
C.V.		24.59	4.02	3.99	5.53	8.85	20.89	12.28	12.28	88.15	67.33	15.43	76.24	12.98	18.28	18.76	18.72
Promedios		5.54	64.98	67.35	222.66	115.11	4.24	42.13	61597.75	7.11	6.94	40.01	4.21	7.18	5.44	4.56	6611.06


^{**=} Altamente significativos al 0.01% de probabilidad, *= Significativos al 0.05% de probabilidad, ns= No significativos.

F.V.= Fuente de variación, G.L.= Grados de libertad, C.M.E.= Cuadrado medio del error, C.V.= Coeficiente de variación, FM: Floración masculina, FF: Floración femenina, AP: Altura de planta, AM: Altura de mazorca, NPL: Número de plantas, DEN: Densidad de población estimada por parcela, AR: Porcentaje de acame de raíz, AT: Porcentaje de acame de tallo, PGRA: Peso de grano, REND: Peso de grano ajustado a kg/ha (rendimiento).

Para la localidad El Salitre las medias de rendimiento se presentan en el Cuadro 18 del apéndice. La media de rendimiento del experimento fue de 7,227 kg/ha, el 49 % de los tratamientos presentaron rendimiento superior a la media, el testigo de referencia LUG282xCML311 presentó 8,295 kg/ha de rendimiento y el 11 % de tratamientos con germoplasma de teocintle presentaron mayor rendimiento que el testigo de referencia, y de esté 11%, el 9% de los tratamientos presentan germoplasma de la raza Balsas, un tratamiento con germoplasma de Nobogame y un tratamiento con germoplasma de Mesa Central, el tratamiento que presentó mayor rendimiento fue el testigo P3164W con 10,762 kg/ha, y en segundo lugar el tratamiento 88 con germoplasma de *Zea mays* ssp. *parviglumis* (Crucero Lagunitas, Tecoanapa, Guerrero, Balsas) con un rendimiento de 10,491 kg/ha, y el tratamiento que presentó menor rendimiento fue el 32 con germoplasma de *Zea mays* ssp. *mexicana* (El Pedregal, Ocoyoacac, México, Chalco) que obtuvo 2,920 kg/ha (Figura 6).

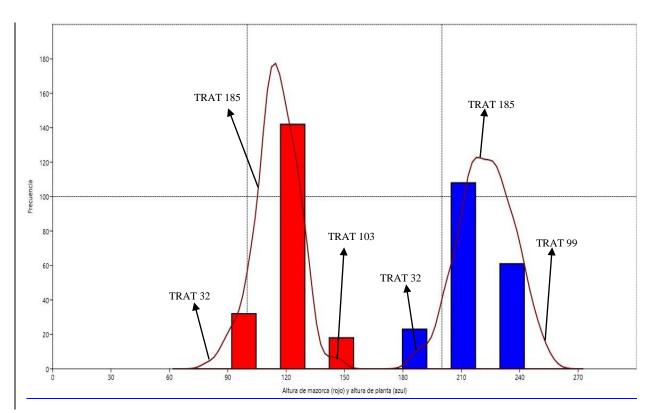
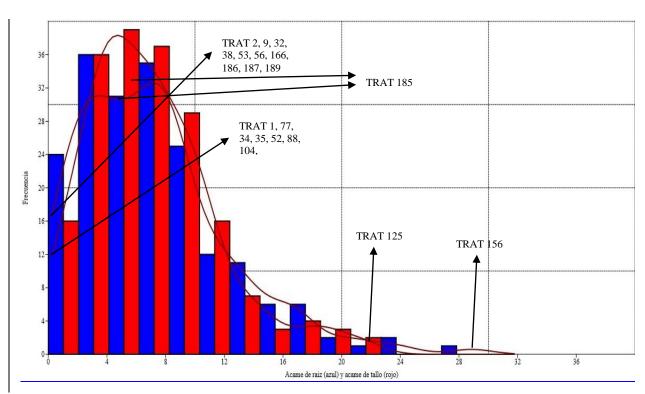


Figura 6. Distribución de frecuencias de medias para rendimiento de grano de 192 tratamientos en la localidad de El Salitre.


Figura 7. Distribución de frecuencias de medias para floración masculina y femenina de 192 tratamientos en la localidad de El Salitre.

Para la variable días a floración masculina y femenina el tratamiento con menos días fue el 57 con germoplasma de Zea mays ssp. mexicana (Penjamillo de Degollado, Penjamillo, Michoacán, Mesa Central) que presentó 59 y 61 días, otros materiales que presentaron precocidad similar fueron los tratamientos 30 con germoplasma de Zea mays ssp. mexicana (El Pedregal, Ocoyoacac, México, Chalco), y el tratamiento 135 con germoplasma de Zea mays ssp. parviglumis (La Lima, Tolimán, Jalisco, Balsas), ambos con 59 y 62 días para floración masculina y femenina respectivamente; el tratamiento 144 con germoplasma de Zea mays ssp. parviglumis (Zacatlancillo, Teloloapan, Guerrero, Balsas) presentó 60 y 61 días para floración masculina y femenina; y el tratamiento 192 hibrido comercial testigo P3164W registro 60 y 62 días para floración masculina y femenina. El testigo de referencia tratamiento 185 (LUG282xCML311) presentó 66 y 69 días a floración masculina y femenina. Mientras que los materiales más tardíos observados fueron los tratamientos 98 con germoplasma de Zea mays ssp. parviglumis (Los Cimientos, Villa Purificación, Jalisco, Balsas) con 71 y 74 días a floración masculina y femenina y el 43 con germoplasma de Zea mays ssp. mexicana (Opopeo, Salvador Escalante, Michoacán, Chalco) con 72 y 73 días para floración masculina y femenina respectivamente (Figura 7).

Figura 8. Distribución de frecuencias de las medias para altura de planta y mazorca de 192 tratamientos en la localidad de El Salitre.

El tratamiento 99 con germoplasma de *Zea mays* ssp. *parviglumis* (Los Cimientos, Villa Purificación, Jalisco, Balsas) presento la mayor altura de planta con 255 cm, el promedio de altura para el experimento fue de 223 cm, la menor altura de planta y de mazorca lo presentó el tratamiento 32 con germoplasma de *Zea mays* ssp. *mexicana* (El Pedregal, Ocoyoacac, México, Chalco) con 186 y 80 cm respectivamente. El tratamiento testigo de referencia LUG282xCML311 presento un promedio de 219 cm y 111 cm para altura de planta y de mazorca, en altura de mazorca la mayor altura la presentó el tratamiento 103 con germoplasma de *Zea mays* ssp. *parviglumis* (El Salado, Mochitlán, Guerrero, Balsas) con 148 cm (Figura 8).

Figura 9. Distribución de frecuencias de las medias para acame de raíz y tallo de 192 tratamientos en la localidad de El Salitre.

Los tratamientos que no presentaron acame de raíz para esta localidad fueron el 2 y 9 con germoplasma de Zea diploperennis (San Andrés Milpillas, Huajicori, Nayarit), 32 y 38 con germoplasma de Zea mays ssp. mexicana (El Pedregal, Ocoyoacac, México, Chalco y Opopeo, Salvador Escalante, Michoacán, Chalco), 53 y 56 (El Salteador, Yuriria, Guanajuato, Mesa Central y Penjamillo de Degollado, Penjamillo, Michoacán, Mesa Central); 166 con germoplasma de Zea luxurians (Las Majadas, Jutiapa, Guatemala), los testigos experimentales LUG78xCML311, LUG03xCML311 y el híbrido comercial Cimarrón. Los materiales que no presentaron acame de tallo fueron los tratamientos 1 y 77 ambos con germoplasma de Zea diploperennis (San Andrés Milpillas, Huajicori, Nayarit y San Miguel Cuzalapa Cuautitlán de García Barragán, Jalisco), 34 y 35 con germoplasma de Zea mays ssp. mexicana (El Pedregal, Ocoyoacac, México, Chalco), 52 (El Salteador, Yuriria, Guanajuato, Mesa Central), 88 y 104 con germoplasma de Zea mays ssp. parviglumis (Crucero Lagunitas, Tecoanapa, Guerrero, Balsas y El Salado, Mochitlán, Guerrero, Balsas) respectivamente. El testigo de referencia LUG282xCML311 mostro porcentajes de acame de raíz y de tallo de 4.45% y 5.84%. El tratamiento con mayor porcentaje de acame de raíz fue el 156 con germoplasma de Zea mays ssp. parviglumis (Plan de los Timbres, Huitzuco de los Figueroa, Guerrero, Balsas) con 28.9 % y el material que presentó mayor porcentaje de acame de tallo fue el tratamiento 125 con germoplasma de *Zea mays ssp. parviglumis* (Huixtitla, Amatepec, México, Balsas) con 21.7%.

Cuadro 8. Prueba de Dunnett para la variable rendimiento de grano en la localidad de El Salitre.

Tratamiento	Hibrido	Origen de la fuente de Teocintle	Especie, Raza	Rendimiento (kg/ha)
185	LUG282xCML311	CIMMYT	Zea mays (L.)	7227
4	261x84	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	3812***
32	261x112	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	2920***
38	261x118	Opopeo, Salvador Escalante, Michoacán	Zea mays ssp. mexicana, Chalco	3733***
108	261x188	El Salado, Mochitlan, Guerrero	Zea mays ssp. parviglumis, Balsas	3600***

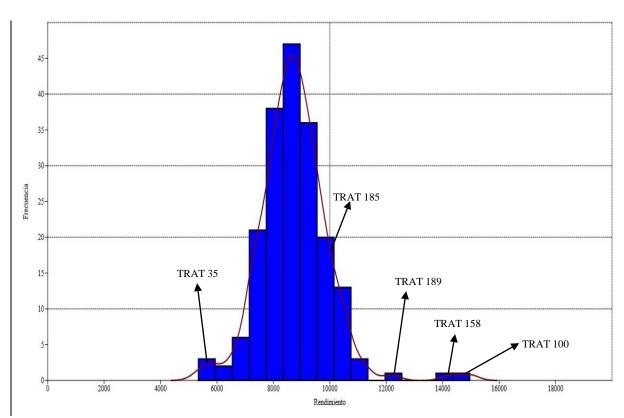
*** Diferencias mínimas significativas al 0.05

La prueba de Dunnett nos muestra los tratamientos que fueron diferentes al 0.05 % con respecto al tratamiento 185 testigo de referencia (LUG282xCML311) en donde para esta localidad del Salitre no hubo tratamientos con teocintle superiores y las diferencias existentes son con menor rendimiento (Cuadro 8). Los tratamientos con germoplasma de teocintle estadísticamente iguales al testigo de referencia fueron 174, de los cuales, 50.57 % fueron de la raza Balsas, 10.34 % de Mesa Central, 9.19 % de Chalco, 9.19 % de Zea diploperennis, 5.17 % Nobogame, 5.17 % Durango, 5.17 % Zea luxurians y 5.17 % ssp. huehuetenanguensis.

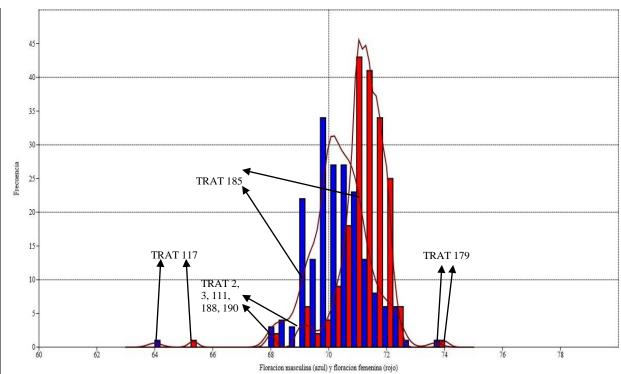
4.3 Resultados de análisis de varianza y comparación de medias para la localidad del campo agrícola experimental del CUCBA, Zapopan, Jalisco, 2015T.

Los resultados del análisis de varianza para la localidad del CUCBA se presentan en el Cuadro 9. En la fuente de variación repeticiones, las variables floración masculina y calificación de planta fueron no significativas, mientras que el resto de variables fueron altamente significativas. En la fuente de variación tratamientos y bloques/repeticiones todas las variables presentaron diferencias altamente significativas.

El coeficiente de variación para la variable rendimiento de grano obtuvo un valor de 17.05% y para las variables con calificación de forma visual e influenciadas por condiciones y variaciones ambientales sus coeficientes de variación fueron altos (vigor, calificación a plantas, acame de raíz y de tallo y mazorcas dañadas).


Cuadro 9. Cuadrados medios de las diferentes variables en la localidad del CUCBA.

F.V.	G.L.	Vigor	FM	FF	AP	AM	CP	NPL	DEN	AR	AT	MZ	DA	CMZ	PESM	PGRA	REND
Repeticiones	2	7.63**	1.14ns	3.14**	5177.66**	637.79**	1.7ns	140.16**	299575748**	18164.91**	448.78**	941.78**	386.13**	20.39**	12.01**	16.35**	33921954.1**
Bloques (Rep)	45	9.13**	3.25**	1.29**	408.44**	259.08**	7.03**	44.55**	95216618**	3960**	190.24**	68.92**	31.16**	2.53**	3.36**	2.57**	4986479.2**
Hibridos	191	2.83**	3.08**	2.19**	206.41**	212.12**	1.79**	33.64**	71905558**	501.48**	87.39**	67.19**	29.22**	1.99**	2.06**	1.85**	3928374.9**
C.M.E.		1.22	0.65	0.41	88.15	72	1.11	19.12	40872806	372.99	57.48	35.89	17.32	1.16	0.82	0.92	2222900
C.V.		19.52	1.14	0.9	3.46	5.21	21.07	11.14	11.14	70.27	145.63	13.25	93.1	16.4	12.38	15.54	17.05
Promedios		5.65	70.36	71.16	271.71	162.76	4.98	39.25	57378.03	27.49	5.21	45.23	4.47	6.55	7.31	6.19	8746.32


^{**=} Altamente significativos al 0.01% de probabilidad, *= Significativos al 0.05% de probabilidad, ns= No significativos.

F.V.= Fuente de variación, G.L.= Grados de libertad, C.M.E.= Cuadrado medio del error, C.V.= Coeficiente de variación, FM: Floración masculina, FF: Floración femenina, AP: Altura de planta, AM: Altura de mazorca, NPL: Número de plantas, DEN: Densidad de población estimada por parcela, AR: Porcentaje de acame de raíz, AT: Porcentaje de acame de tallo, PGRA: Peso de grano, REND: Peso de grano ajustado a kg/ha (rendimiento).

En el Cuadro 19 del apéndice. Se presentan las medias para rendimiento y caracteres agronómicos en la localidad del CUCBA. En esta localidad la media de rendimiento de grano fue de 8,746 kg/ha donde el 48 % de los tratamientos presentaron rendimientos arriba de la media, el híbrido testigo de referencia LUG282xCML311 (tratamiento 185) presento un promedio de rendimiento de 10,144 kg/ha, los tratamientos testigos (híbridos comerciales) Cimarrón, P3055W, P3164W y Dk2027Y presentaron medias de rendimiento de 12,187, 11,165, 10,558 y 10,534 kg/ha respectivamente; dos tratamientos, el 100 con germoplasma de teocintle de ssp. parviglumis colectado en El Salado, Mochitlán, Guerrero y el tratamiento 158 también con germoplasma de teocintle de ssp. parviglumis colectado en Plan de los Timbres, Huitzuco, Guerrero, fueron los que presentaron los promedios de rendimiento mayores para esta localidad con 14,961 y 14,270 kg/ha respectivamente, el tratamiento con menor media para rendimiento de grano fue el 35 con germoplasma de Chalco colectado en El Pedregal, Ocoyoacac, México, con 5,340 kg/ha, así como en los experimentos anteriores los tratamientos con mejores medias para rendimiento de grano predominan materiales con germoplasma de la subespecie parviglumis raza Balsas, con un promedio de 45% de tratamientos superando la media del experimento (Figura 10).

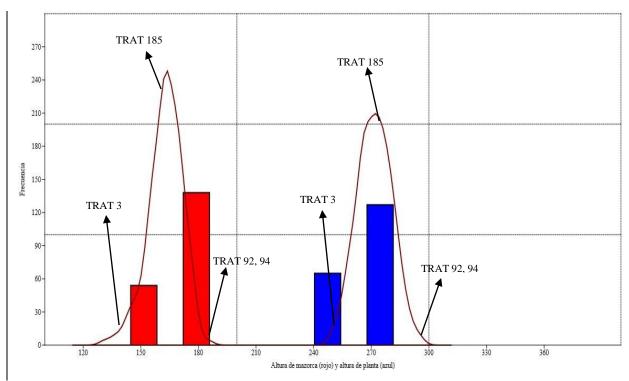

Figura 10. Distribución de frecuencias de las medias de rendimiento de grano de 192 tratamientos en la localidad del CUCBA.

Figura 11. Distribución de frecuencias de medias para floración masculina y femenina de 192 tratamientos en la localidad del CUCBA.

El tratamiento con menos días a floración fue el 117 (LUG282xB73) con 64 y 65 días a floración masculina y femenina, la media del experimento para días a floración

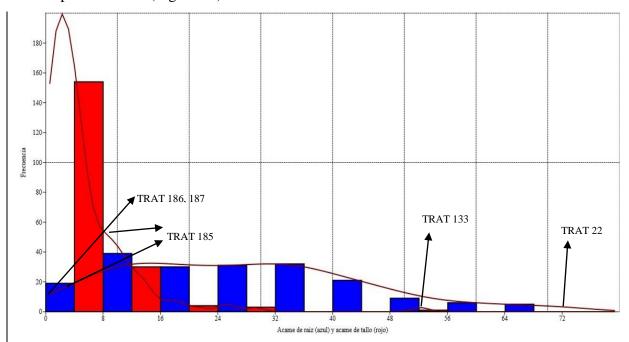

masculina y femenina fue de 70 y 71 días, el tratamiento 185 testigo de referencia (LUG282xCML311) presentó 69 y 71 días, el tratamiento 179 presento el mayor número de días a floración masculina y femenina con 74 días, este con germoplasma de *Zea mays* ssp. *huehuetenanguensis* (Huehuetenango, El Tablón, San Antonio Huista). Los tratamientos 190 y 188 (testigos comerciales P3055W y DK2027Y) presentaron 68 y 69 días para floración masculina y femenina, Cimarrón y P3164W con 69 y 68 días a floración masculina y femenina, los tratamientos 111 (San Cristóbal Honduras, San Jerónimo Coatlán, Oax. Balsas), 2 y 3 (San Andrés Milpillas, Huajicori, Nay. *Zea diploperennis*) presentaron 68 y 69 días a floración masculina y femenina (Figura 11), de igual forma que los experimentos anteriores los materiales con menos días a floración masculina y femenina fueron tratamientos con germoplasma de *Zea diploperennis*.

Figura 12. Distribución de frecuencias de las medias para altura de planta y mazorca de 192 tratamientos en la localidad del CUCBA.

Para estas variables de altura de planta y de mazorca los tratamientos 92 y 94 fueron los que presentaron mayor altura, estos con germoplasma de *Zea mays* ssp. *parviglumis* (Los Cimientos, Villa Purificación, Jalisco, Balsas) con 295 cm de altura de planta y 185 cm de altura de mazorca. El tratamiento con porte bajo fue el 3 con germoplasma de *Zea diploperennis* (San Andrés Milpillas, Huajicori, Nayarit) con 251 cm de altura de planta y 131 cm de altura de mazorca, el hibrido testigo de referencia

LUG282xCML311 presentó una media de altura de planta y de mazorca de 277 cm y 166 cm respectivamente (Figura 12).

Figura 13. Distribución de frecuencias de las medias para acame de raíz y tallo de 192 tratamientos en la localidad del CUCBA.

Para esta localidad se presentó un fenómeno natural que favoreció la presencia de estas dos variables, los materiales que no presentaron acame de raíz fueron los tratamientos 186 y 187 (testigos experimentales LUG78xCML311 y LUG03xCML311), los materiales que no presentaron acame de tallo fueron el 8% de los tratamientos, estos con diferentes fuentes de germoplasma (Zea diploperennis, Balsas, Mesa Central, Nobogame y Zea luxurians). Además, hubo mucho acame de tallo, con promedios de tratamientos de 52 % como es el caso del tratamiento 133 con germoplasma de Zea mays ssp. parviglumis (La Lima, Tolimán, Jalisco, Balsas) y también para acame de raíz como el tratamiento 22 con germoplasma Zea mays ssp. mexicana (El Tepalcate, Nombre de Dios, Dgo.) con 72.07 %, el tratamiento testigo de referencia 185 (LUG282xCML311) mostró un promedio para acame raíz y de tallo de 2.18 % 8.69 respectivamente. y

Cuadro 10. Prueba de Dunnett para la variable rendimiento de grano en la localidad del CUCBA.

Tratamiento	Hibrido	Origen de la fuente de Teocintle	Especie, Raza	Rendimiento (kg/ha)
100	261x180	El Salado, Mochitlan, Guerrero	Zea mays ssp. parviglumis, Balsas	14961***
158	261x238	Plan de los Timbres, Huitzuco, Guerrero	Zea mays ssp. parviglumis, Balsas	14270***
185	LUG282xCML311	CIMMYT	Zea mays (L.)	10088
47	261x127	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. C.	6726***
174	261x254	Sn. J. del Tablón, Huehuetenango, Guatemala	Zea mays ssp. huehuetenanguensis	6565***
67	261x147	El Tablillo, Guachinango, Jalisco	Zea mays ssp. parviglumis, Balsas	6509***
83	261x163	Cro. Lagunitas, Tecoanapa, Guerrero	Zea mays ssp. parviglumis, Balsas	6034***
49	261x129	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. C.	5776***
163	261x243	Las Majadas, Jutiapa, Guatemala	Zea luxurians	5679***
35	261x115	El Pedregal, Ocoyoacac, México	Zea mays ssp. mexicana, Chalco	5340***

^{***} Diferencias mínimas significativas al 0.05

La prueba de Dunnett muestra los tratamientos que fueron diferentes al 0.05 % con respecto al tratamiento 185 testigo de referencia (LUG282xCML311), en donde para esta localidad del CUCBA los tratamientos con teocintle significativamente superiores fueron el 100 y el 158, ambos con germoplasma de la raza Balsas. 166 tratamientos fueron estadísticamente iguales al testigo de referencia, de los cuales el 50 % pertenecen a la raza Balsas, 10.24 % a Zea diploperennis, 9.64 a la raza Mesa Central, 5.42 % a Chalco, 5.42 % a Nobogame, 5.42 % a Durango, 4.82 % a Zea luxurians y 4.82 % a ssp. huehuetenanguensis (Cuadro 10).

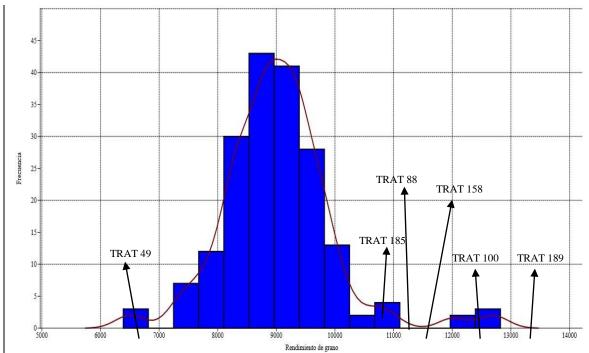
4.4 Resultados del análisis de varianza combinado y comparación de medias de las tres localidades (La Soledad, El Salitre y CUCBA), Jalisco, 2015T.

Las variables calificación a planta, número de mazorcas, mazorcas dañadas, calificación a mazorca y peso de mazorcas fueron tomadas solo en las localidades de El Salitre y el CUCBA, debido a que la cosecha en estas parcelas fue manual y permitió el registro oportuno de estas variables. Las variables calificación a planta y peso de mazorcas presentaron diferencias altamente significativas en todas las fuentes de variación (localidades, repeticiones/localidades, bloques/repeticiones/localidades, híbridos y localidades/tratamientos); la variable número de mazorcas presento diferencias significativas solo para la interacción localidades/tratamientos, mientras que para el resto de fuentes de variación hubo diferencias altamente significativas; en la variable mazorcas dañadas localidades y localidades/tratamiento no presentaron diferencias significativas, mientras que repeticiones/localidades, bloques/repeticiones/localidades e híbridos fueron altamente significativas; y en la variable calificación a mazorcas todas las fuentes de

variación fueron altamente significativas, excepto localidades/tratamiento que no presento diferencias significativas.

Las variables tomadas en las tres localidades fueron: vigor, floración masculina, floración femenina, altura de planta, altura de mazorca, número de plantas, densidad de población, acame de raíz, acame de tallo, peso de grano y rendimiento de grano. Las variables que presentaron diferencias altamente significativas en todas las fuentes de variación son vigor, floración masculina, floración femenina, altura de planta, número de plantas, densidad de población y peso de grano. La fuente de variación localidades/tratamientos no presento diferencias significativas en las variables altura de mazorca, acame de raíz, acame de tallo y rendimiento. En la variable rendimiento de grano el valor obtenido de coeficiente de variación fue de 14.92 %, un valor aceptable para este tipo de experimentos en los que las condiciones ambientales influencian el desempeño y plasticidad del material vegetal.

Cuadro 11. Cuadrados medios de las variables medidas en el análisis de varianza combinado de las tres localidades, 2015T.


F.V.	G.L.	Vigor	FM	FF	AP	AM	NPL	DEN	AR	AT	PGRA	REND
Loc	2	340.91**	3678.79**	3286.07**	268522.69**	258531.65**	15749.3**	33662779366**	63861.61**	1540.9**	927.85**	2192530457**
REP (loc)	5	92.58**	58.67**	42.65**	4288.69**	1108.66**	251.07**	536637681**	8496.1**	190.17**	12.3**	24164036**
Bloques (Loc*Rep)	120	8.26**	13.31**	9.08**	433.82**	259.26**	38**	81228980**	1530.87**	100.71**	1.48**	2958300**
Híbridos	187	2.27**	7.84**	7.5**	419.87**	390.8**	33.46**	71511645**	236.32ns	53.96**	3.15**	6450417**
Loc*TRAT	369	1.69**	4.38**	4.24**	128.57**	91.31ns	22.89**	48916956**	179.97ns	42.62*	0.97**	2097324*
C.M.E.		1.29	2.6	2.54	105.73	85.4	13.85	29613219.82	200.88	36.75	0.79	1826428
C.V.		22.45	2.39	2.33	4.06	6.55	8.49	8.5	90.35	123.43	14.22	14.92
Promedios		5.06	67.59	68.47	253.24	141.11	43.81	64055.34	15.69	4.91	6.25	9059.44

^{**=} Altamente significativos al 0.01% de probabilidad, *= Significativos al 0.05% de probabilidad, ns= No significativos.

F.V.= Fuente de variación, G.L.= Grados de libertad, C.M.E.= Cuadrado medio del error, C.V.= Coeficiente de variación, FM= Floración masculina, FF= Floración femenina, AP= Altura de planta, AM= Altura de mazorca, NPL= Número de plantas, DEN= Densidad de población, AR= Porcentaje de acame de raíz, AT= Porcentaje de acame de tallo, PGRA= Peso de grano, REND= Rendimiento de grano ajustado a kg/ha.

Cuadro 12. Cuadrados medios del análisis combinado de variables medidas en dos localidades (El Salitre y CUCBA) 2015T.

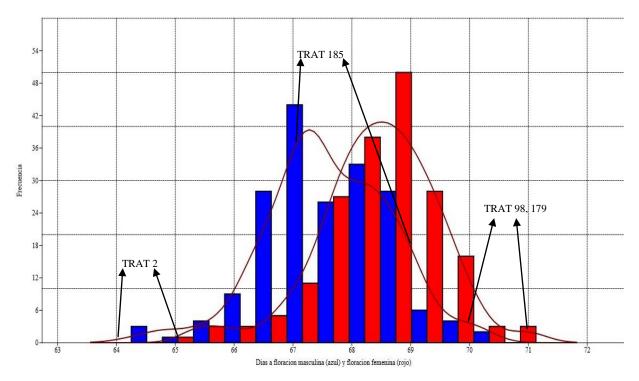
F.V.	G.L.	CP	MZ	DA	CMZ	PESM
Loc	1	110.67**	6188.83**	12.96ns	92.8**	744.45**
REP (loc)	3	22.81**	932.1**	263.76**	14.84**	15.55**
Bloques (Loc*Rep)	75	4.85**	69.89**	23.54**	2.38**	2.64**
Híbridos	185	1.61**	62.21**	19.88**	2.17**	2.43**
Loc*TRAT	184	1.33**	44.89*	14.4ns	1.17ns	1.29**
C.M.E.		1	36.62	15.03	1.06	0.87
C.V.		21.36	14.03	88.77	15.14	14.25
Promedios		4.69	43.14	4.37	6.81	6.56

Figura 14. Distribución de frecuencias de las medias de rendimiento de grano de 192 tratamientos en las tres localidades (análisis combinado).

Los resultados de las medias del análisis combinado para rendimiento de grano se presentan en el Cuadro 12. La media rendimiento fue de 9,059 kg/ha, el 49 % de los tratamientos (88) presentan rendimientos arriba de la media, el tratamiento 185 testigo de referencia LUG282xCML311 ocupa el lugar número 12 en el promedio de medias con 10,437 kg/ha, el hibrido testigo comercial Cimarrón (tratamiento 189) fue el que obtuvo mayor rendimiento de grano con 12,823 kg/ha, seguido por los híbridos comerciales P3164W, P3055W y DK2027Y con 12,713, 12,524 y 12,013 kg/ha respectivamente. Los tratamientos con germoplasma de teocintle de mayores rendimientos arriba del testigo de referencia fueron el 100 (El Salado, Mochitlán, Guerrero) con 11,978 kg/ha, 158 (Plan de los Timbres, Huitzuco, Guerrero) con 11,039 kg/ha y el 88 (Crucero Lagunitas, Tecoanapa,

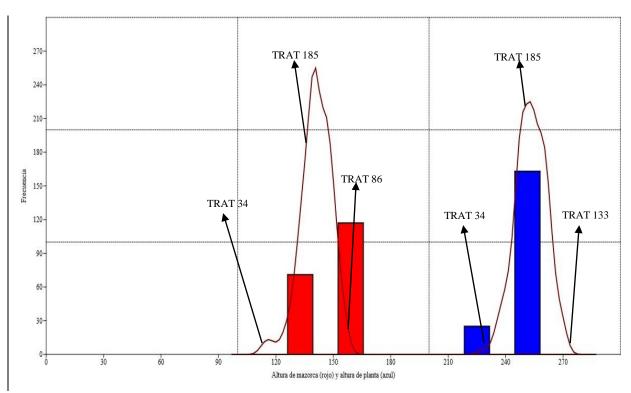
Guerrero) con 10,842 kg/ha, estos tratamientos con germoplasma de *Zea mays* ssp. *parviglumis* raza Balsas; el tratamiento con menor rendimiento obtenido a través de localidades fue el 49 *Zea mays* ssp. *mexicana* (El Salteador, Yuriria, Guanajuato, Mesa Central) con 6,388 kg/ha (Figura 14).

Cuadro 13. Promedios de variables evaluadas de los ensayos en las tres localidades de Jalisco, 2015T.

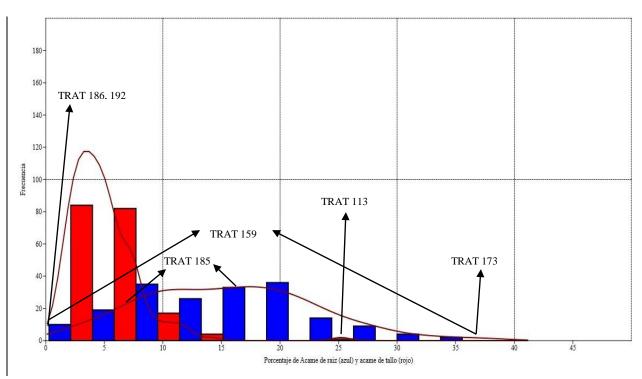

TRAT	CRUZA	FM	FF	AP	AM	NPL	DENS	AR	AT	MZDA	CMZ	PESM	PGRA	REND
189	Cimarrón	68	68	247	129	46	66886	2.8	3.7	8.3	8	8.8	8.9	12823
192	P3164W	65	66	238	125	47	67983	0.6	4.4	3.7	8	8.4	8.8	12713
190	P3055W	65	66	264	140	47	68896	2.4	2.5	6.0	8	8.8	8.6	12524
188	DK2027Y	67	68	254	136	47	68348	3.9	1.7	7.2	9	7.9	8.3	12013
100	261x180	67	68	268	151	46	66886	19.8	6.2	2.3	7	7.2	8.1	11978
158	261x238	68	69	252	140	46	66703	8.8	4.3	3.0	7	6.0	7.3	11039
88	261x168	67	68	270	149	45	65607	19.5	2.6	2.6	8	8.6	7.5	10842
191	DAS2362	67	69	255	134	44	64145	8.4	4.2	13.3	7	6.8	7.5	10797
89	261x169	68	69	260	147	45	65972	13.8	2.6	3.1	8	7.9	7.5	10681
187	03x311	68	69	233	134	47	68714	9.5	5.0	3.1	7	8.6	7.6	10660
185	282x311	67	69	254	141	45	65388	15.9	6.9	3.1	8	7.5	7.3	10437
75	261x155	67	67	251	130	50	72612	2.7	2.0			•	7.0	10365
143	261x223	67	68	255	147	44	64510	19.5	2.8	2.3	6	7.1	6.9	10195
144	261x224	66	66	261	145	45	65790	13.0	4.7	4.5	7	7.3	7.0	10135
133	261x213	68	68	271	155	45	65972	18.3	25.2	12.9	7	7.8	7.0	10121
53	261x133	68	69	255	147	46	67434	3.4	3.1	4.3	8	7.8	7.0	10032
130	261x210	67	68	259	145	46	66521	7.6	5.5	2.1	8	8.0	7.0	9962
59	261x139	67	68	247	139	43	62500	27.8	7.4	3.6	7	7.6	6.9	9916
123	261x203	68	68	261	145	45	65424	23.5	4.8	2.6	8	7.1	6.9	9912
96	261x176	68	69	265	149	46	66886	11.5	2.4	2.3	7	7.7	6.9	9896
180	261x260	68	69	263	144	45	65059	22.9	3.1	2.3	8	7.4	6.9	9873
135	261x215	66	67	254	140	45	65059	16.9	4.4	4.2	8	7.0	6.8	9868
154	261x234	69	70	261	150	47	67983	19.3	7.4	3.1	7	7.3	6.9	9846
127	261x207	67	67	266	147	44	63597	16.8	4.5	6.5	7	6.8	6.8	9829
92	261x172	69	70	268	155	45	66338	16.1	6.9	3.4	7	7.2	6.8	9815
125	261x205	66	67	259	147	47	68165	22.6	8.9	2.9	7	6.9	6.7	9803
57	261x137	66	67	252	139	44	64693	25.1	2.1	3.4	7	7.3	6.8	9800
101	261x181	69	70	260	148	47	68531	18.0	4.9	4.8	7	7.6	6.9	9770
18	261x98	68	68	247	139	45	65241	20.6	3.5	2.8	7	6.8	6.8	9730
131	261x211	69	69	252	139	46	67252	18.4	6.0	4.6	7	7.1	6.8	9726
63	261x143	67	68	261	146	44	64876	10.1	1.3	3.1	7	7.8	6.8	9719
84	261x164	68	69	265	155	45	65790	24.1	11.9	4.1	8	7.7	6.8	9715
56	261x136	67	68	254	142	44	63597	16.0	7.4	2.6	8	7.2	6.7	9692
150	261x230	66	68	258	145	45	65424	26.0	3.6	4.3	7	6.4	6.6	9673
176	261x256	67	69	263	152	44	63779	19.1	4.2	6.5	8	6.9	6.7	9659
33	261x113	67	67	259	144	44	64510	15.7	7.3	3.4	7	6.7	6.7	9654
161	261x241	69	70	263	151	45	65059	21.4	10.8	5.3	7	6.6	6.8	9650
186	78x311	67	69	236	133	47	68165	1.0	2.5	19.1	7	7.0	6.7	9634
105	261x185	69	70	261	151	45	65241	19.4	7.6	5.1	7	7.4	6.7	9627
132	261x212	69	70	249	144	43	63414	12.8	5.6	4.2	6	6.8	6.7	9603
160	261x240	68	69	263	151	43	63048	14.1	6.8	5.2	7	7.1	6.6	9588
115	261x195	67	68	260	145	44	64510	17.0	4.0	3.9	7	7.3	6.6	9556
30	261x110	65	65	263	141	45	65424	15.7	8.6	2.9	7	7.0	6.5	9546
99	261x179	68	69	269	156	44	64876	25.0	7.0	4.2	7	7.3	6.6	9510
124	261x204	69	69	255	152	43	63048	20.8	8.1	2.8	7	6.6	6.5	9450
94	261x174	68	69	263	151	46	67617	14.5	10.5	3.7	6	6.7	6.5	9447
137	261x217	67	68	252	140	44	64876	13.5	3.5	2.4	7	7.4	6.5	9442
177	261x257	68	69	267	150	44	64510	19.0	5.5	6.2	7	6.8	6.5	9440
80	261x160	69	70	247	137	46	66886	11.2	7.1	7.6	7	7.0	6.5	9434
78	261x158	67	69	254	143	45	66155	17.3	7.7	1.8	8	7.1	6.5	9422

TRAT	CRUZA	FM	FF	AP	AM	NPL	DENS	AR	AT	MZDA	CMZ	PESM	PGRA	REND
55	261x135	68	69	253	139	46	66886	16.8	2.6	7.2	7	6.6	6.5	9408
141	261x221	67	68	264	147	45	66338	22.3	2.2	2.4	8	7.3	6.5	9407
14	261x94	67	68	251	140	45	65790	4.4	4.0	1.5	8	7.4	6.5	9380
26	261x106	66	67	258	149	45	65424	11.9	7.0	2.2	7	6.4	6.4	9356
20	261x100	66	68	260	145	45	66338	9.0	6.4	5.4	7	6.9	6.5	9353
178	261x258	67	68	265	148	44	64145	19.0	5.8	1.8	8	6.8	6.5	9353
82	261x162	68	69	259	143	44	63962	10.6	5.1	4.5	7	6.9	6.4	9351
107	261x187	67	69	262	145	46	66886	14.3	1.8	3.8	6	6.7	6.4	9350
42	261x122	66	67	256	138	44	63597	6.9	2.7	1.4	6	6.9	6.4	9348
81	261x161	67	68	260	141	46	67800	8.6	1.3	2.2	7	6.8	6.4	9346
70	261x150	67	68	249	140	44	64328	9.7	4.6	3.0	8	6.9	6.4	9334
77	261x157	68	69	263	147	45	66155	7.6	3.6	4.4	6	6.9	6.4	9328
52	261x132	68	69	255	143	45	65059	5.3	1.1	4.1	6	7.1	6.4	9325
58	261x138	68	69	239	131	44	63779	28.6	2.8	7.5	7	6.9	6.4	9318
140	261x220	68	68	254	143	45	65607	15.3	5.7	2.7	6	6.6	6.4	9314
29	261x109	67	68	254	137	44	63962	16.4	2.0	5.0	7	6.8	6.4	9297
146	261x226	68	68	252	143	43	63048	9.2	5.8	2.8	6	6.6	6.3	9259
139	261x219	69	69	253	141	48	69627	22.0	2.2	4.4	7	6.6	6.4	9251
95	261x175	69	70	256	147	47	68896	19.1	6.4	3.8	7	6.4	6.3	9247
157	261x237	67	68	257	140	45	66155	20.0	4.5	6.2	7	7.0	6.4	9227
43	261x123	70	70	260	144	46	66703	21.2	5.0	5.3	7	6.7	6.4	9226
93	261x173	70	70	253	143	46	67252	11.4	3.6	4.5	7	7.0	6.4	9218
66	261x146	69	70	243	133	42	61586	10.8	4.9	7.9	7	6.3	6.4	9217
109	261x189	69	69	259	141	44	63779	24.2	4.6	3.2	8	6.8	6.3	9209
37	261x117	68	68	250	136	42	61586		2.4	4.8	7	6.6	6.3	9209
168	261x248	68	69	255	140	45		12.2	2.1	5.1	6	7.0	6.3	9203
121	261x201	68	69	248	141	44	64693	18.6	3.2	3.5	7	6.6	6.3	9194
60	261x140	69	69	249	141	44	63597	10.5	3.0	3.5	7	6.1	6.4	9191
13	261x93	68	69	254	139	44	63597	18.6	6.1	6.7	8	6.3	6.3	9138
23	261x103	68	68	258	148	44	64145	32.8	3.4	2.4	7	6.7	6.3	9135
117	261x197	65	66	250	133	45	65607	13.8	14.1	8.0	8	6.5	6.2	9114
149	261x229	69	69	249	139	43	62683	11.3	4.6	3.7	8	6.8	6.3	9102
128	261x208	68	69	253	139	45	65424	26.6	3.6	5.0	6	6.7	6.3	9101
71	261x151	69	69	261	148	45	65241			2.7	7	6.4	6.2	9099
153	261x233	67	68	262		44	64510	20.4	5.7	2.2	7	6.5	6.2	9065
45	261x125	67	68	248	141	46	66886	6.4	8.9	3.6	7	6.7	6.2	9063
148	261x228	70	70	253	145	44	64693		1.8	1.6	6	7.0	6.2	9051
15	261x95	67	69	251	134	45	65241	7.3	1.7	2.8	7	6.6	6.3	9046
28	261x108	67	68	262	149	45	65241	12.1	10.0	2.4	7	6.8	6.2	9015
44	261x124	66	67	261	147	45	65607	21.8	4.9	3.5	7	6.8	6.2	9002
162	261x242	67	68	260	150	43	62500		10.6	3.3	7	6.4	6.2	8994
5	261x85	67	68	245	124	45	65059	24.0	1.3	4.1	7	6.6	6.2	8972
136	261x216	69	70	256	148	43	62500		7.5	2.2	8	6.5	6.2	8952
151	261x231	68	70	246	137	44	64145	21.0	2.9	2.7	6	6.6	6.2	8950
17	261x97	67	68	248	136	44	64876		3.2	5.4	6	7.2	6.2	8946
91	261x171	69	70	259	150	43	62866		3.2	2.2	6	6.1	6.2	8946
27	261x107	67	68	253	142	46	66521		4.3	1.0	7	6.5	6.2	8941
85	261x165	67	68	254	149	45	65607		5.5	4.2	6	6.5	6.1	8939
72	261x152	66	68	250	137	43	63048		4.1	5.0	7	6.4	6.2	8938
142	261x222	67	68	251	141	44	64328		4.8	1.9	7	6.5	6.2	8932
126	261x206	67	67	256	151	45	65972		5.1	3.1	7	6.8	6.2	8930
25	261x105	68	69	257	146	43	63231		5.3	1.8	7	6.4	6.1	8923
167	261x247	69	70		131	42	60855		3.3	4.2	7	6.6	6.2	8894

TRAT	CRUZA	FM	FF	AP	AM	NPL	DENS	AR	AT	MZDA	CMZ	PESM	PGRA	REND
102	261x182	69	70	257	146	44	63962	22.2	4.2	3.8	6	6.3	6.1	8883
114	261x194	68	69	250	134	45	65972	17.1	7.2	2.8	6	6.5	6.1	8873
1	261x81	67	68	248	134	40	58845	17.2	1.3	4.2	7	6.5	6.1	8871
90	261x170	68	68	264	153	43	63231	20.2	4.0	3.2	6	6.3	6.1	8864
65	261x145	67	68	255	139	45	65059	26.4	4.9	6.7	6	6.0	6.1	8857
24	261x104	67	69	261	145	45	66338	20.8	5.5	3.9	6	6.7	6.1	8839
147	261x227	66	67	259	157	44	63597	16.2	6.2	2.7	7	6.1	6.0	8810
106	261x186	67	69	257	147	44	64510	19.2	2.6	3.7	6	6.6	6.1	8802
97	261x177	67	68	266	152	41	60124	33.3	3.2	4.2	7	6.4	6.1	8795
62	261x142	68	69	258	143	44	63779	8.7	2.6	3.8	7	6.5	6.0	8791
19	261x99	68	69	258	144	47	68165	8.7	4.0	5.1	7	6.5	6.1	8775
16	261x96	68	69	241	131	45	65972	5.0	1.5	5.9	7	6.3	6.1	8754
159	261x239	67	68	255	145	44	64510	37.0	0.3	2.2	7	5.9	6.0	8749
171	261x251	69	69	259	147	44	63779	9.6	4.4	3.2	6	6.6	6.1	8744
103	261x183	68	69	260	154	46	67252	17.6	7.8	0.8	7	6.5	6.1	8741
10	261x90	67	68	248	133	44	63962	13.1	4.2	5.1	7	6.1	6.0	8738
134	261x214	69	70	251	139	45	65424	16.8	3.3	6.8	7	6.2	6.0	8734
156	261x236	69	70	247	141	42	61038	29.0	7.4	1.8	6	6.1	6.0	8727
39	261x119	66	67	249	133	41	59942	11.3	2.5	5.4	7	6.6	6.1	8723
113	261x193	67	68	252	140	45	65607	10.8	3.7	2.5	7	6.1	6.0	8717
79	261x159	68	69	244	136	42	61586	15.5	3.8	6.9	7	6.3	6.0	8713
122	261x202	68	68	248	140	44	64876	11.0	7.3	4.0	6	6.3	6.0	8712
155	261x235	68	69	257	142	45	66155	18.9	3.8	6.9	6	5.9	6.0	8711
6	261x86	67	68	243	133	42	60673	16.4	4.3	3.9	7	6.2	6.0	8696
173	261x253	68	69	270	151	42	61769	37.4	2.7	4.9	6	5.7	5.9	8656
165	261x245	69	70	258	146	45	65059	16.1	3.0	5.6	7	6.7	6.0	8654
51	261x131	67	68	249	141	44	63962	17.6	4.8	4.9	7	5.8	5.9	8629
4	261x131	67	69	243	133	41	59942	9.4	4.2	4.9	6	5.8	6.0	8618
54	261x134	68	69	253	141	42	61221	11.2	2.1	2.4	7	6.4	5.9	8586
9	261x134 261x89	67	69	237	129	43	62866	7.5	5.8	6.3	6	6.1	5.9	8569
40	261x120	66	68	246	132	43	62135	14.2	3.1	3.8	7	6.4	5.9	8543
129	261x120 261x209	68	69	252	140	42	61769	7.3	12.1	2.0	7	6.4	5.9	8520
112	261x192	69	69	242	125	44	64328	9.5	2.4	2.0	,	0.4	5.8	8506
87	261x152 261x167	68	69	252	149	42	61952		9.3	4.9	6	6.1	5.8	8494
46	261x107	67	68	245	133	43	62500		3.0	5.1	6	6.3	5.9	8493
48	261x128	67	67	248	140	45	65607		2.3	3.9	6	6.2	5.8	8484
138	261x128	67	68	245	139	45	66155	21.6	3.5	3.6	5	5.8	5.8	8429
98	261x178	70	71	245	135	43	62683	3.4	9.7	5.5	6	5.9	5.9	8413
166	261x176 261x246	69	70	244	129	43	62683	13.7	3.8	5.9	6	5.9	5.8	8399
76	261x156	66	67	247	136	44		13.7	2.8	11.6	6	6.3	5.8	8395
64	261x130 261x144	67	69	251	137	42	61586	3.4	6.8	4.6	7	5.7	5.8	8392
104	261x144 261x184	67	68	257	145	45	65790		2.6	3.9	6	6.4	5.7	8378
172	261x164 261x252	69	70	254	143	44	63597		6.2	2.5	7	5.8	5.7	8376
172		70	71	253	144	44		15.3	2.1	4.0	7	6.3	5.8	8360
	261x250		69	245	133		63414		5.0	7.8				
22	261x102	68 67				43					6	5.8	5.7	8348
69 152	261x149	67 68	68 60	244 244	137 138	45	65424 58480	8.0	2.3	4.1 4.3	6 7	6.2 5.5	5.8 5.7	8340 8319
	261x232	68	69			40			11.9		7		5.7	
3	261x83	66 60	67 70	236	117	43	62500	5.5	3.8	4.4 5.0	6	5.9	5.7	8314
164	261x244	69	70	254	146	41	59576		1.7	5.8	6	6.0	5.7	8313
12	261x92	67	68	248	141	44	63597		3.7	8.8	6	5.8	5.7	8307
174	261x254	67	68	249	136	39	56287	26.7	5.4	7.4	7	5.5	5.7	8298
11	261x91	67	68	248	138	43	62317		3.2	6.8	5	5.6	5.7	8297
68	261x148	67	69	240	135	44	63779	15.9	2.6	3.8	6	5.8	5.7	8297


TRAT	CRUZA	FM	FF	AP	AM	NPL	DENS	AR	AT	MZDA	CMZ	PESM	PGRA	REND
118	261x198	68	69	252	143	45	65607	10.6	3.2	2.2	6	6.7	5.7	8261
179	261x259	70	71	261	155	43	63414	14.0	5.9	5.9	6	5.8	5.7	8259
21	261x101	68	68	248	140	44	64693	12.3	6.4	4.7	6	5.5	5.6	8195
111	261x191	66	67	247	137	46	66703	7.0	5.5	4.8	7	5.9	5.6	8165
36	261x116	68	69	239	131	39	57018	9.9	7.1	1.6	8	6.1	5.6	8155
73	261x153	68	69	246	127	41	59942	16.7	4.4	0.5	7	5.7	5.6	8152
41	261x121	67	68	248	137	40	59028	12.8	5.2	5.3	6	5.8	5.6	8148
119	261x199	68	69	254	147	46	66521	24.1	5.5	3.6	7	6.0	5.6	8103
34	261x114	65	66	228	113	40	57895	3.1	0.4	8.3	8	4.4	5.5	8062
116	261x196	69	69	240	130	39	56469	13.5	3.0	3.2	7	5.5	5.6	8052
35	261x115	67	68	250	135	37	53911	11.2	1.5	3.4	7	5.1	5.6	8031
110	261x190	68	68	251	133	43	63048	10.7	8.0	5.7	7	5.8	5.5	8029
50	261x130	68	69	262	150	45	65424	22.5	2.0	6.2	6	5.6	5.5	7922
7	261x87	68	69	247	135	42	61952	27.3	1.7	7.2	7	5.8	5.4	7893
8	261x88	69	69	239	127	37	53911	6.5	5.3	3.8	6	5.0	5.4	7871
169	261x249	68	69	252	135	43	62135	7.7	2.3	4.6	6	6.1	5.3	7803
61	261x141	69	69	260	146	43	63414	7.8	11.3	5.1	6	5.6	5.3	7793
67	261x147	68	69	249	136	42	60673	24.0	7.3	3.9	7	5.0	5.3	7698
31	261x111	69	70	255	135	42	61404	21.2	7.2	4.8	6	5.7	5.3	7686
120	261x200	67	68	256	145	43	63414	30.1	5.6	3.7	7	6.3	5.3	7621
74	261x154	67	68	236	122	41	59393	9.6	5.2	7.1	7	5.5	5.2	7545
145	261x225	68	70	248	142	43	62683	28.3	5.7	3.5	6	5.4	5.1	7485
47	261x127	67	68	253	139	45	65790	7.1	7.8	2.2	5	5.4	5.1	7409
108	261x188	69	69	260	148	39	57200	7.9	1.6	4.6	7	5.0	5.0	7341
2	261x82	64	65	233	118	41	59393	4.3	5.1	3.6	6	5.1	5.0	7295
83	261x163	67	68	257	151	46	67252	14.6	7.7	4.3	5	5.0	4.9	7260
163	261x243	67	69	247	139	37	54094	8.6	3.7	5.2	7	5.5	4.6	6663
32	261x112	66	68	236	115	33	48794	7.7	4.7	6.5	6	4.8	4.5	6494
49	261x129	67	68	248	138	42	61221	5.1	1.4	5.2	6	4.9	4.4	6388

TRAT=tratamiento, FM=floración masculina (días), FF=floración femenina (días), AP= altura de planta (cm), AM=altura de mazorca (cm), NPL=número de plantas, DENS=densidad de población (plantas/ha), AR=acame de raíz, AT=acame de tallo, MD= mazorcas dañadas, PESM=peso de mazorcas (kg), PGRA=peso de grano (kg), REND= rendimiento de grano (kg/ha).


Figura 15. Distribución de frecuencias de las medias para floración masculina y femenina de 192 tratamientos en las tres localidades.

El material que mostró mayor precocidad fue el tratamiento 2 con germoplasma de Zea diploperennis (San Andrés Milpillas, Huajicori, Nayarit) con 64 y 65 días a floración masculina y femenina; el tratamiento 185 testigo de referencia (LUG282xCML311) mostró en promedio de 67 y 69 días a floración masculina y femenina; los tratamientos con mayor número de días a floración masculina y femenina fueron el 179 con germoplasma de Zea mays ssp. huehuetenanguensis (El Tablón, San Antonio Huista, Huehuetenango, Guatemala) y el 98 con germoplasma de Zea mays ssp. parviglumis (Los Cimientos, Villa Purificación, Jalisco, Balsas) ambos con 70 y 71 días respectivamente (Figura 15).

Figura 16. Distribución de frecuencias de las medias para altura de planta y mazorca de 192 tratamientos en las tres localidades.

El tratamiento con mayor altura de planta fue el 133 con germoplasma de *Zea mays* ssp. *parviglumis* (La Lima, Tolimán, Jalisco, Balsas) con 271 cm, el tratamiento con menor altura de planta fue el 34 con germoplasma de *Zea mays* ssp. *mexicana* (El Pedregal, Ocoyoacac, México, Chalco) con 228 cm; el porte de planta para el tratamiento 185 (LUG282xCML311) fue de 253 cm de altura de planta y 140 cm de altura de mazorca en promedio, el tratamiento con mayor altura de mazorca fue el 86 con germoplasma de *Zea mays* ssp. *parviglumis* (Crucero Lagunitas, Tecoanapa, Guerrero, Balsas) con 157 cm y el tratamiento con la menor altura de mazorca fue el 34 con germoplasma de *Zea mays* ssp. *mexicana* (El Pedregal, Ocoyoacac, México, Chalco) con 113 cm (Figura 16).

Figura 17. Distribución de frecuencias de medias para acame de raíz y tallo de 192 tratamientos en las tres localidades.

Los tratamientos con menor porcentaje de acame de raíz fueron los testigos 192 (P3164W) y 186 (LUG78xCML311) con 0.6 y 1 % respectivamente; el tratamiento con mayor porcentaje de acame de raíz fue el 173 con germoplasma de Zea mays ssp. huehuetenanguensis (El Tablón, San Antonio Huista, Huehuetenango, Guatemala) con 37.4 %. El tratamiento con menor porcentaje de acame de tallo fue el 159 con germoplasma de Zea mays ssp. parviglumis (Plan de los Timbres, Huitzuco, Guerrero, Balsas) con 0.3 %, sin embargo, este tratamiento presentó un porcentaje alto de acame de raíz de 37 %, por lo que cabe resaltar que los materiales con menor grado de acame general fueron los de menor porte de planta (altura de planta y de mazorca), tales como los tratamientos con germoplasma de Zea diploperennis y Zea mays ssp. mexicana razas Chalco y Nobogame. El material con mayor acame de tallo fue el tratamiento 113 con germoplasma de Zea mays ssp. parviglumis (La Lima, Tolimán, Jalisco, Balsas) con 25.2 %, el tratamiento 185 (LUG282xCML311) testigo de referencia en promedio obtuvo 15.9 acame % de acame de raíz 6.9 % de de tallo (Figura 17).

Cuadro 14. Prueba de Dunnett de la variable rendimiento de grano en las tres localidades.

Tratamiento	Híbrido	Origen de la fuente de Teocintle	Especie, Raza	Rendimiento (kg)
189	Cimarrón	Monsanto/Asgrow	Zea mays L.	12823***
192	P3164W	Pioneer	Zea mays L.	12713***
190	P3055W	Pioneer	Zea mays L.	12524***
185	LUG282xCML311	CIMMYT	Zea mays (L.)	12925
174	261x254	El Tablón, San Antonio Huista, Hue. Guatem.	Zea mays ssp. huehuetenanguensis	8298***
11	261x91	Tarahumares, Gpe. y Calvo, Chihuahua	Zea mays ssp. mexicana, Nobogame	8297***
68	261x147	El Tablillo, Guachinango, Jalisco	Zea mays ssp. parviglumis, Balsas	8297***
38	261x118	Opopeo, Salvador Escalante, Michoacán	Zea mays ssp. mexicana, Chalco	8290***
118	261x198	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	8261***
179	261x259	El Tablón, San Antonio Huista, Hue. Guate.	Zea mays ssp. huehuetenanguensis	8259***
21	261x101	El Tepalcate, Nombre de Dios, Durango	Zea mays ssp. mexicana, Durango	8195***
111	261x191	Sn. Cristóbal Hond. Sn. Jmo. Coatlan, Oax.	Zea mays ssp. parviglumis, Balsas	8165***
36	261x116	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	8155***
73	261x153	San Miguel Cuzalapa, Cuautitlán, Jalisco	Zea diploperennis	8152***
41	261x121	Opopeo, Salvador Escalante, Michoacán	Zea mays ssp. mexicana, Chalco	8148***
119	261x199	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	8103***
116	261x196	Sn. Cristóbal Hond. Sn. Jmo. Coatlan, Oax.	Zea mays ssp. parviglumis, Balsas	8052***
35	261x115	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	8031***
110	261x190	Sn. Cristóbal Hond. Sn. Jmo. Coatlan, Oax.	Zea mays ssp. parviglumis, Balsas	8029***
50	261x130	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	7922***
7	261x87	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	7893***
8	261x88	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	7871***
169	261x249	Las Majadas, Jutiapa, Guatemala	Zea luxurians	7803***
6	261x86	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	8696***
67	261x147	El Tablillo, Guachinango, Jalisco	Zea mays ssp. parviglumis, Balsas	7698***
31	261x111	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	7686***
120	261x200	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	7621***
74	261x154	San Miguel Cuzalapa, Cuautitlán, Jalisco	Zea diploperennis	7545***
145	261x225	El Potrero, Huetamo, Michoacán	Zea mays ssp. parviglumis, Balsas	7485***
47	261x127	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	7409***
108	261x188	El Salado, Mochitlan, Guerrero	Zea mays ssp. parviglumis, Balsas	7341***
2	261x82	San Andrés Milpillas, Huajicori, Nayarit	Zea diploperennis	7295***
83	261x163	Crucero Lagunitas, Tecoanapa, Guerrero	Zea mays ssp. parviglumis, Balsas	7260***
163	261x243	Las Majadas, Jutiapa, Guatemala	Zea luxurians	6663***
32	261x112	El Pedregal, Ocoyoacac, Edo. de México	Zea mays ssp. mexicana, Chalco	6494***
49	261x129	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	6388***

*** Diferencias mínimas significativas al 0.05

La prueba de Dunnett muestra los tratamientos que fueron diferentes al 0.05 % con respecto al tratamiento 185 testigo de referencia (LUG282xCML311), en donde para esta prueba del análisis combinado no hubo tratamientos con teocintle significativamente superiores para la variable rendimiento, pero el 82 % de los tratamientos (147 de 180) fueron estadísticamente iguales al testigo de referencia, de los cuales el 53.06 % corresponde a la raza Balsas, 9.52 % a la raza Mesa Central, 8.84 % a *Zea diploperennis*,

8.16 % a la raza Chalco, 5.44 % a la raza Nobogame, 5.44 % a la raza Durango, 4.76 % a Zea luxurians y 4.76 % a ssp. huehuetenanguensis (Cuadro 13).

Cuadro 15. Mejores híbridos con germoplasma de teocintle del análisis combinado.

Tratamiento	Híbrido	Origen de la fuente de Teocintle	Especie, Raza	Rendimiento (kg)
185	LUG282xCML311	CIMMYT	Zea mays (L.)	12925
100	261x180	El Salado, Mochitlán, Guerrero	Zea mays ssp. parviglumis, Balsas	11978
158	261x238	Plan de los Timbres, Huitzuco, Guerrero	Zea mays ssp. parviglumis, Balsas	11039
88	261x168	Crucero Lagunitas, Tecoanapa, Guerrero	Zea mays ssp. parviglumis, Balsas	10842
89	261x169	Crucero Lagunitas, Tecoanapa, Guerrero	Zea mays ssp. parviglumis, Balsas	10681
143	261x223	Zacatlancillo, Teloloapan, Guerrero	Zea mays ssp. parviglumis, Balsas	10195
144	261x224	Zacatlancillo, Teloloapan, Guerrero	Zea mays ssp. parviglumis, Balsas	10135
133	261x213	La Lima, Tolimán, Jalisco	Zea mays ssp. parviglumis, Balsas	10121
53	261x133	El Salteador, Yuriria, Guanajuato	Zea mays ssp. mexicana, M. Central	10032
130	261x210	La Lima, Tolimán, Jalisco	Zea mays ssp. parviglumis, Balsas	9962
59	261x139	Penjamillo de Degollado, Penjamillo, Michoacán	Zea mays ssp. mexicana, M. Central	9916
123	261x203	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	9912
96	261x176	Los Cimientos, Villa Purificación, Jalisco	Zea mays ssp. parviglumis, Balsas	9896
180	261x260	El Tablón, San Antonio Huista, Hue. Guatemala	Zea mays ssp. huehuetenanguensis	9873
135	261x215	La Lima, Tolimán, Jalisco	Zea mays ssp. parviglumis, Balsas	9868
75	261x155	San Miguel Cuzalapa, Cuautitlán, Jalisco	Zea diploperennis	9860
154	261x234	Plan de los Timbres, Huitzuco, Guerrero	Zea mays ssp. parviglumis, Balsas	9846
127	261x207	La Lima, Tolimán, Jalisco	Zea mays ssp. parviglumis, Balsas	9829
92	261x172	Los Cimientos, Villa Purificación, Jalisco	Zea mays ssp. parviglumis, Balsas	9815
125	261x205	Huixtitla, Amatepec, Edo. de México	Zea mays ssp. parviglumis, Balsas	9803
57	261x137	Penjamillo de Degollado, Penjamillo, Michoacán	Zea mays ssp. mexicana, M. Central	9800

Los híbridos con germoplasma de teocintle más sobresalientes para rendimiento de grano en las tres localidades, fueron los de la raza Balsas, de estos los más consistentes fueron los tratamientos 100 (El Salado, Mochitlán, Guerrero), 158 (Plan de los Timbres, Huitzuco, Guerrero) y 88 (Crucero Lagunitas, Tecoanapa, Guerrero). También se presentaron híbridos con germoplasma de la raza Mesa Central sobresalientes para la variable rendimiento de grano, estos fueron los tratamientos 53 (El Salteador, Yuriria, Guanajuato), 57 y 59 (Penjamillo de Degollado, Penjamillo, Michoacán).

V DISCUSIÓN

Los antecedentes conocidos respecto al uso de los parientes silvestres en el mejoramiento del maíz desde los años 1950 con diferentes poblaciones de teocintle para mejorar o ampliar caracteres de importancia económica y agronómica se han realizado (Reeves y Mangelsdorf, 1959; Lambert y Leng, 1965; Cohen y Galinat, 1984; Casas et al. 2003; Padilla et al. 2002; Wang et al. 2008) con bastante éxito. Las investigaciones más recientes como los trabajos de Casas et. al. (2003), describen y miden caracteres con funcionalidad agronómica en diferentes líneas de maíz con diversos niveles de introgresión (retrocruza dos y tres) de especies de Zea mays ssp. parviglumis raza Balsas, Zea mays ssp. mexicana (razas Chalco y Mesa Central) y Zea diploperennis de Jalisco. Con base en lo anterior se inició una investigación con el objetivo de identificar fuentes de germoplasma de teocintle que ayuden a incrementar los niveles de calidad y de aptitud combinatoria en maíz para caracteres de importancia económica; entre las aportaciones de este trabajo se considera el incluir un número amplio de poblaciones que representan la diversidad conocida, entre estas, las razas Durango y Nobogame (Zea mays ssp. mexicana) Zea diploperennis de Nayarit, Zea mays ssp. huehuetenanguensis y Zea luxurians de Guatemala y Oaxaca.

Cada una de las investigaciones referidas anteriormente tiene la particularidad que han trabajado con especies de teocintles específicas y familias estrechamente relacionadas; en esta investigación se planteó un modelo para hacer una evaluación de las probabilidades de aprovechamiento de la mayoría de especies disponibles y conocidas de teocintle hasta la actualidad. El incorporar a un estudio como estos la mayor cantidad de poblaciones o especies de teocintle que se conocen es justificable dado que se busca evaluar el aumento en el rendimiento de grano de las líneas o materiales de maíz a los que se les incorporan germoplasma de teocintle, esto debido a que el caracter rendimiento de grano es cuantitativo porque depende de muchos genes y factores ambientales externos que interaccionan juntos. La evaluación llevada a cabo en la etapa de segunda retrocruza (RC2) permitió hacer una evaluación fenotípica amplia de variables como rendimiento de grano, precocidad, porte de planta, acame de raíz y de tallo más amplia en cuanto a diversidad presente, ya que los 180 híbridos LUG282xRC2 se pudieron evaluar conjuntamente contra el híbrido testigo de referencia LUG282xCML311. De esta manera, la evaluación de los cruzamientos se relaciona directamente con qué especie de teocintle está involucrada en transferencia de germoplasma con cambios significativos, respecto al testigo en las variables medidas. Los mejores híbridos comerciales evaluados para estas localidades tuvieron un muy buen comportamiento, superando al testigo de referencia LUG282xCML311 y a casi todas las retrocruzas con teocintle. Es importante señalar que varios tratamientos presentaron rendimientos de grano iguales y superiores a algunos testigos híbridos comerciales y al testigo de referencia en cada una de las tres localidades con gran optimismo ya que esto difiere a lo encontrado por Padilla *et al.* (2002). Con relación a otros caracteres agronómicos considerados, no hay diferencias marcadas de los cruzamientos con teocintle respecto al testigo, sin embargo, hay una tendencia a mayor altura de planta y de mazorca similar a lo encontrado en trabajos previos como Rosas *et. al.* (2015) y por tal motivo se incremente el acame de raíz sobre todo en los híbridos con introgresión de *Zea mays* ssp. *parviglumis* raza Balsas.

La variación genética transferida a la línea CML311 de diferentes poblaciones de teocintle fue lograda con éxito, y esta variación es debida a las poblaciones utilizadas para este trabajo que tuvieron el 12.5% de material genético de teocintle proveniente de la misma planta de origen, diferente al resto de trabajos realizados con mezclas de polen de teocintle como Chuela (1999), Padilla *et al.* (2002) y Casas *et al.* (2003).

De acuerdo con los resultados obtenidos las fuentes de teocintle más sobresalientes en cada localidad difieren, sin embargo, destacan los tratamientos 100 con germoplasma de El Salado, Mochitlán, Guerrero; el 89 de Tecoanapa, Guerrero; y el tratamiento 144 de Zacatlancillo, Guerrero; las cuales mostraron consistencia a través de localidades. De cada fuente de teocintle, destacan a través de localidades, La Lima, Jalisco; Tecoanapa, Zacatlancillo y Huitzuco, Guerrero dentro de la raza Balsas (*Zea mays* ssp. *parviglumis*). Además, con buenos resultados se encuentran Penjamillo de Degollado, Michoacán dentro de la raza Mesa Central; Tarahumares, Chihuahua de la raza Nobogame y Cuautitlán de García Barragán, Jalisco (*Zea diploperennis*). El tratamiento 53 de Yuriria, Guanajuato, raza Mesa Central fue sobresaliente en el análisis combinado, sin embargo, no fue consistente a través de localidades porque en este análisis hubo una cruza con introgresión de este mismo germoplasma que obtuvo el rendimiento de grano más bajo (tratamiento 49).

Los análisis anteriores corresponden al rendimiento de grano, días a floración masculina y femenina, altura de planta y de mazorca y acame de raíz y de tallo, mientras que para otros aspectos como resistencia a enfermedades y otros factores adversos, las fuentes de teocintle podrían cambiar. Para precocidad destacan las RC2 provenientes de

Zea diploperennis de Nayarit, las razas Nobogame, Chalco y Mesa Central (Zea mays ssp. mexicana), mientras que para resistencia a enfermedades foliares Zea diploperennis puede representar una de las mejores opciones.

Los resultados descritos previamente sugieren que las RC2 sobresalientes son una guía muy importante para orientar nuestra investigación a evaluaciones fenotípicas con mayor número de ambientes, muestreos amplios y búsqueda detallada de alelos favorables en las poblaciones evaluadas con plantas individuales de teocintle.

VI CONCLUSIONES

Las especies, subespecies y razas silvestres del genero Zea utilizadas, constituyen un reservorio genético con potencial para acelerar el desarrollo de variedades de maíz para alto rendimiento de grano, precocidad, tolerancia a enfermedades y plagas, resistencia a acames de tallo y de raíz, y vigor en plantas como consecuencia de la heterosis expresada por la recombinación del maíz y el teocintle. Además, se abre un amplio abanico de posibilidades de investigación ya que solo evaluamos como primera etapa localidades del estado de Jalisco que representan una zona subtropical, por lo que debemos explorar la utilidad de las fuentes de germoplasma de teocintle en la producción de variedades de maíz que sean estables y resilientes en subtrópico y valles altos.

En las evaluaciones en el año 2015 en las tres localidades el 8.5 % de los tratamientos superaron en rendimiento de grano al tratamiento testigo de referencia (LUG282xCML311), siendo Zea mays ssp. parviglumis y Zea mays ssp. mexicana raza Mesa Central las que incrementaron el rendimiento de grano de los tratamientos evaluados, mientras que Zea diploperennis de Huajicori, Nayarit, aporto mayor precocidad y menor porte de planta. Estos resultados indican la necesidad de explorar en mayor detalle las poblaciones y razas más sobresalientes para incrementar las probabilidades de mayores valores de heterosis y calidad.

VII BIBLIOGRAFÍA

- **Barreto, H.; Edmeades, G.; Chapman, S.; Crossa, I.** 1994. The Alpha Lattice Design in Plant Breeding and Agronomy: Generation and Analysis. *Training material*, CIMMYT, p. 6.
- Casas S., J. F.; Ramírez D., J. L.; Sánchez G., J. J.; Ron P., J.; Montes H., S.; Chuela
 B., M. 2003. Características agronómicas en retrocruzamientos maíz-teocintle.
 Fitotecnia Mexicana, 26 (4): 239 248.
- **Chuela B., M.** 1999. Análisis genético de las cruzas dialélicas de seis líneas élite de maíz con germoplasma de teocintle. *Tesis*. M.C. Manejo de áreas de temporal. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara, p. 97.
- Cohen, J. I.; Galinat, W. C. 1984. Potential Use of Alien Germplasm for Maize Improvement. *Crop Science*, 24: 1011-1015.
- **Evans M., M. S.; Kermicle, J. L.** 2001. Teosinte crossing barrier-1, a locus governing hybridization of teosinte with maize. *Theoretical Applied Genetics*, 103:259-265.
- **Fehr, W. R.** 1993. Principles of Cultivar Development. *Macmillian Publishing Company*, p. 1-9, 107-110, 115-119.
- **Flint-Garcia, S. A.; Bodnar, A. L.; Scott, M. P.** 2009. Wide variability in kernel composition, seed characteristics, and zein proWles among diverse maize inbreds, landraces, and teosinte. *Theoretical Applied Genetics*, 119: 1129-1142.
- Hallauer, A. R.; Miranda, J. B. 1981. Quantitative genetics in maize breeding. *Iowa State University Press*, Ames, IA.
- Holland, J. B.; Jianming, Y.; McMullen, M. D.; Buckler, E. S. 2008. Genetic Design and Statistical Power of Nested Association Mapping in Maize. *Genetics*, 178: 539–551.
- Johannsen, W.; Fischer, G. 1903. Über Erblichkeit in Populationen und in reinen Linien.
- **Kato, Y., T. A.; Sánchez, G., J. J.** 2002. Introgression of chromosome knobs from Zea diploperennis into maize. *Maydica, 47*: 33-50.
- **Lambert, R. J.; Leng, E. R.** 1965. Backcross reponse of two mature plant traits for certain corn teosinte hybrids. *Crop Science*, *5*: 239-241.
- **Mano, Y.; Omori, F.** 2007. Breeding for flooding tolerant maize using "teosinte" as a germplasm resource. *Plant Root*, 1: 17-21.

- **Mano, Y.; Omori, F.** 2013. Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. *Plant Soil*, *370*: 447-460.
- **Mano, Y.; Omori, F.; Loaisiga, C. H.; Bird, R. M.** 2008. QTL mapping of above-ground adventitious roots during flooding in maize x teosinte "Zea nicaraguensis" backcross population. *Plant Root*, *3*: 3-9.
- **Jeuken, M., J. W.; Lindhout, P.** 2003. Future perspectives of Backcross Inbred Lines for exploitation of wild germplasm: a case study on Lactuca saligna as a donor for quantitative resistance to lettuce downy mildew. *Eucarpia Leafy Vegetables*, 69-74.
- **Nault, L. R.; Gordon, D. T.; Iltis, H. H.** 1982. Response of annual and perennial teosintes (*Zea*) to six maize viruses. *Plant Disease*, 66 (1): 61-62.
- Núñez G., L. D. 2013. FIRA. El Economista.
- Padilla G., J. M.; Sánchez G., J. J.; Ramírez D., J. L.; Casas S., J. F.; Ron P., J.; Chuela B., M.; Aguilar S., M. 2002. Medias y varianzas en variedades sintéticas de maíz con diferentes fuentes de germoplasma de teocintle. *Fitotecnia Mexicana*, 25 (4): 401-409
- Ramírez L. 2006. Mejora de Plantas Autógamas. *Universidad de Navarra*, http://www.unavarra.es/genmic/genetica%20y%20mejora/mej_autogamas/mej_autogamas.pdf
- **Reeves, R. G.** 1950. The use of teosinte in the improvement of corn inbreds. *Agronomy Journal*, 42: 248-251.
- **Reeves, R. G. Mangelsdorf, P. C.** 1959. The origin of corn. II. Teosinte a hybrid of corn and Tripsacum. *Bot. Mus. Leafl.* Narv. Univ., *18*:357–387.
- **Rich, P. J.; Ejeta, G.** 2008. Towards effective resistance to Striga in African maize. *Plant Signal Behavior*, *3*(9): 618–621.
- **Rincón, E., G.** 2001. Análisis molecular del flujo genético teocintle-maíz en México. *Tesis de Maestría*, Colegio de Postgraduados, Montecillo, México.
- Ron P., J.; Ramírez D., J. L. 1991. Establecimiento de ensayos y colección de datos para la evaluación de variedades mejoradas de maíz para el CCVP en el estado de Jalisco. Instructivo. Tema Didáctico No.1. Campo Experimental Forestal y Agropecuario Zapopan.
- Rosas M., O. 2015. Retrocruza maiz-teocintle potencial de aprovechamiento genetico del maiz (*Zea mays* L.). *Tesis*. M.C. Biosistemática y Manejo de Recursos Naturales y Agricolas, Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara, p. 66.

- Sánchez G., J. J. 2011. Diversidad del Maíz y el Teocintle. Informe preparado para el proyecto: "Recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maíces y sus parientes silvestres en México". Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- **Sehgal, S. M.** 1963. Effects of teosinte and "*Tripsacum*" introgression in maize. Ph. D. Dissertation, Bussey Institute, Harvard University, Cambridge, Massachusetts.
- Torres P., G.; De la Cruz L., L.; Sánchez G., J. J.; Ruiz C., J. A.; Castañeda N., J. J.; Santacruz R., F.; Miranda M., R. 2015. Relaciones entre poblaciones de teocintle (*zea* spp.) de méxico, guatemala y nicaragua. *Acta Botánica Mexicana*. 111: 17-45.
- **Song, R. T.; Wang, G.; He, Q. Q.; Xu, Z. K.** 2012. High segregation distorsion in maize B73 x teosinte crosses. *Genetics and Molecular Research, 11* (1): 693-706.
- Wang, L.; Yang, A.; He, C.; Qu, M.; Zhang, J. 2008. Creation of new maize germplasm using alien introgression from *Zea mays* ssp. mexicana. *Euphytica*. *164*:789–801.

VIII APÉNDICE

Cuadro 16. Manejo agronómico en la localidad de La Soledad, Zapotlán del Rey, Jalisco, 2015T.

Fecha de aplicación	Producto	Dosis (0.5 ha)	Función
06/jun/2015	Fórmula	210 kg	1ra fertilización (en siembra)
	N-P-K:20-10-10		
06/jun/2015	Force (Teflutrin)	10 kg	Insecticida en siembra
21/jun/2015	Convey (Topramezone	125 mL + 0.5 kg	Herbicida en
	Atrazina + 2 kg de SAM	+ 1.5 kg / 100 L agua	posemergencia temprana de maleza
22/jun/2015	Karate zeon	125 mL / 100 L agua	Insecticida: control de
	(Lambda-cihalotrina)		gusanos cortadores
06/jul/2015	UREA granular	125 kg	2da fertilización (30 días después
	46-00-00		la siembra)
12/jul/2015	Basagran (Bentazona-sodio)	1 L / 100 L agua	Herbicida posemergente
23/jul/2015	Labor de aclareo de plantas	2 jornales	Densidad: 50 plantas / tratamiento
			65,800 plantas / ha
10/ago/2015	UREA granular	125 kg	3ra fertilización
	46-00-00		(65 días después de la siembra)
27/nov/2015	Cosecha mecanizada	Cosechadora	Recolección de mazorcas
		experimental	por tratamiento, desgrane,
		New Holland	registro electrónico de peso
		Twin Rotor 88	y humedad de grano.

Cuadro 17. Manejo agronomico en la localidad de El Salitre, San Martin Hidalgo, Jalisco, 2015T.

Fecha de aplicación	Producto	Dosis (0.5 ha)	Función
13/jun/2015	Formula	210 kg	1ra fertilización (en siembra)
	N-P-K:20-10-10		
13/jun/2015	Clorpynova (Clorpirifos etil)	10 kg	Insecticida en siembra
17/jun/2015	Sempra (Halosulfuron metil)	35 g / 100 L agua	Herbicida en posemergencia de
			coquillo (Cyperus rotundus)
18/jun/2015	Primagram gold (atrazina y	2 L / 100 L agua	Herbicida en pre y posemergencia de
	metolaclor)		maleza
07/jul/2015	Convey (Topramezone)+ Atrazina	125 mL + 0.5 kg	Herbicida en posemergencia
	2 kg de SAM	+ 1.5 kg / 100 L agua	temprana de maleza
09/jul/2015	Lorsban (clorpirifos etil) +	1 L + 1 L / 100 L agua	Insecticida: control de gusano
	Bayfolan (fertilizante foliar)		cogollero (Spodoptera frugiperda) y
			nutrición foliar con microelementos
18/jul/2015	UREA prilada	100 kg	2da fertilización (35 días después
	46-00-00		de la siembra)
25/jul/2015	Lorsban (clorpirifos etil) +	500 mL +	Insecticida: control de gusano
	Bayfolan (fertilizante foliar) +	500 mL +	cogollero (S. frugiperda),
	ProVigor (Fósforo)	500mL / 100 L agua	nutrición foliar con microelementos
			y fósforo
26/jul/2015	Sempra (Halosulfuron metil)	22.5 g / 60 L agua	Aplicación localizada para
			controlar coquillo (C. rotundus)
29/jul/2015	Labor de aclareo de plantas	2 jornales	Densidad:
			48 plantas / tratamiento
			63,160 plantas / ha
06/ago/2015	Lorsban (clorpirifos etil) +	750 mL + 1 L +	Insecticida para control de
	Bayfolan (fertilizante foliar)	500~mL/100~Lagua	gusano cogollero
	+ ProVigor (Fosforo)		(S. frugiperda), nutrición foliar
			con microelementos y fósforo
15/ago/2015	UREA prilada	100 kg	3ra fertilización (63 días
	46-00-00		después de la siembra)
23-26/nov/2015	Cosecha manual	5 jornales	Recolección de mazorcas, desgrane,
			registro de calificación y
			peso de mazorcas,
			peso y humedad de grano.

Cuadro 18. Manejo agronómico en la localidad del CUCBA, Zapopan, Jalisco, 2015T.

Fecha de aplicación	Producto	Dosis (0.5 ha)	Función
22/jun/2015	Fórmula	210 kg	1ra fertilización (en siembra)
	N-P-K:20-10-10		
22/jun/2015	Clorpynova (Clorpirifos etil)	10 kg	Insecticida en siembra
08/jul/2015	Convey (Topramezone	125 mL + 0.5 kg	Herbicida en posemergencia tempra
	Atrazina + 2 kg de SAM	+ 1.5 kg / 100 L agua	de maleza
10/jul/2015	Lorsban (clorpirifos etil)	1 L + 1 L / 100 L agua	Insecticida para control de
	Bayfolan (fertilizante foliar)		gusano cogollero
			(S. frugiperda) y nutrición foliar
			con microelementos
21/jul/2015	Labor de aclareo de plantas	2 jornales	Densidad: 46 plantas / Tratamiento
			60,530 plantas / ha
22/jul/2015	UREA granular	70 kg	2da fertilización (30 días después
	46-00-00		de la siembra)
28/jul/2015	Lorsban (clorpirifos etil)	300 mL +	Insecticida para control de
	Magnesio +	400~mL + 250~mL /	gusano cogollero
	Bayfolan (fertilizante foliar)	100 L agua	(S. frugiperda), nutrición foliar
	+ ProVigor (Fosforo)		con microelementos,
			magnesio y fósforo
05/ago/2015	UREA granular	70 kg	3ra fertilización (44 días después
	46-00-00		de la siembra)
11/ago/2015	Lorsban (clorpirifos etil)	750 mL + 1 L + 500 mL	Insecticida para control de
	Bayfolan + Mas Verde	/ 100 L agua	gusano cogollero
	(fertilizantes foliares)		(S. frugiperda), nutrición foliar
			con microelementos
07-11/dic/2015	Cosecha manual	8 jornales	Recolección de mazorcas
			por tratamiento, desgrane, y
			registro de calificación y
			peso de mazorcas,
			peso y humedad de grano.

Cuadro 19. Promedios de variables evaluadas en la localidad de La Soledad, Zapotlán del Rey, Jalisco, 2015T.

192 P3164W	TRAT	Cruza	Vigor	FM	FF	AP	AM	NPL	DENS	AR	AT	PGRA	REND
188 DK2027Y 5 66 66 265 138 50 73100 1.3 0.0 10.6 15844 191 DAS236C 5 65 65 65 67 135 50 73100 0.0 0.1 1.3 10.8 15609 190 P3005SW 6 62 62 277 140 50 73100 18.0 5.3 9.4 13666 183 282x311 5 66 66 265 143 50 73100 3.3 3.3 9.4 13666 183 282x311 5 66 66 257 134 50 73100 21.3 4.0 9.1 13344 181 282x311 4 66 66 62 257 134 50 73100 21.3 4.0 9.1 13035 187 03x311 4 67 68 228 127 50 73100 1.3 0.7 9.0 12906 150 261x230 4 67 67 256 139 50 73100 1.3 0.7 9.0 12906 150 261x230 4 67 67 256 139 50 73100 1.3 0.7 9.0 12809 89 261x169 4 67 67 256 139 50 73100 1.3 0.7 9.0 12809 89 261x169 4 67 67 256 139 50 73100 6.7 0.0 8.7 12684 143 261x223 4 67 66 259 145 50 73100 5.3 4.0 8.5 12453 127 261x207 4 65 66 259 145 50 73100 5.3 4.0 8.5 12453 127 261x207 4 65 66 259 145 50 73100 5.3 4.0 8.5 12453 127 261x207 4 66 66 256 140 50 73100 13.3 2.7 8.3 12346 186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x13 4 67 67 248 135 50 73100 18.7 2.0 8.2 12331 123 261x203 4 67 66 265 255 139 50 73100 18.7 2.0 8.2 12331 123 261x203 4 67 67 248 131 50 73100 8.7 3.3 8.1 12108 142 261x234 4 67 67 248 131 50 73100 18.7 2.0 8.2 12331 13 261x11 5 66 66 256 143 50 73100 18.7 2.0 8.2 12311 13 261x214 5 66 66 266 143 50 73100 1.3 2.7 8.3 12109 1.3 261x215 5 67 67 248 131 50 73100 1.0 5.3 8.2 12004 132 261x215 5 67 67 265 143 50 73100 1.0 5.3 8.2 12004	192	P3164W	4	66	66	243	122	50	73100	0.0	1.3	11.1	16139
191 DAS2362 5	189	Cimarrón	5	67	67	256	131	50	73100	0.7	2.0	11.1	15980
190 P3055W 6 62 62 277 140 50 73100 0.0 0.0 10.4 15516 182 282x311 3 66 66 66 265 143 50 73100 18.0 5.3 9.4 13661 183 282x311 5 66 66 62 241 132 50 73100 3.3 3.3 9.1 13344 181 282x311 4 66 66 257 134 50 73100 21.3 4.0 9.1 13035 187 03x311 4 67 68 228 127 50 73100 1.3 0.7 9.0 12906 150 261x230 4 67 67 256 139 50 73100 17.3 1.3 8.6 12823 161 261x241 4 67 67 263 144 50 73100 17.3 1.3 8.6 12823 161 261x241 4 67 67 263 144 50 73100 12.7 7.3 9.0 12809 89 261x169 4 67 67 263 144 50 73100 12.7 7.3 9.0 12809 89 261x169 4 66 66 259 145 50 73100 8.7 3.3 8.4 12561 182 261x203 4 67 66 254 139 50 73100 7.3 2.7 8.5 12510 182 261x203 4 66 66 253 140 50 73100 5.3 4.0 8.5 12453 127 261x205 4 66 66 256 140 50 73100 5.3 4.0 8.5 12311 33 261x113 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x13 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x13 4 67 67 248 131 50 73100 13.3 2.7 8.3 12161 144 261x224 3 66 65 255 139 50 73100 11.3 2.7 8.1 12109 124 261x204 4 67 67 264 143 50 73100 11.3 2.7 8.1 12109 124 261x214 5 66 66 261 149 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 73100 18.0 8.7 3.3 8.1 12108 132 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12002 132 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12002 132 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12004 132 261x213 4 66 66 260 143 50 73100 1.3 2.7 8.3 1180 11754 132 261x213 4 66 66 266 149 50 73100 1.3 2.7 8.0	188	DK2027Y	5	66	66	265	138	50	73100	1.3	0.0	10.6	15844
182 282x311 3	191	DAS2362	5	65	65	267	135	50	73100	0.0	1.3	10.8	15609
183 282x311 5 66 66 244 132 50 73100 9.3 5.3 9.3 13417 184 282x311 5 66 66 65 259 143 50 73100 21.3 3.0 9.1 133035 187 03x311 4 66 66 257 134 50 73100 1.3 0.7 9.0 12906 150 261x230 4 67 67 256 139 50 73100 1.3 0.7 9.0 12906 150 261x241 4 67 67 263 144 50 73100 12.7 7.3 9.0 12906 143 261x241 4 67 67 260 141 50 73100 12.7 7.3 9.0 12906 143 261x241 3 66 66 254 139 50 73100 6.7 0.0 8.7 12684 143 261x223 4 67 66 254 139 50 73100 8.7 3.3 8.4 12561 60 261x140 3 66 66 259 145 50 73100 7.3 2.7 8.5 12510 18 261x98 4 66 66 253 140 50 73100 2.0 5.3 8.3 12372 125 261x205 4 66 66 65 256 140 50 73100 1.7 5.3 8.3 12346 186 78x311 4 667 67 238 131 49 72125 2.7 0.0 8.5 12313 133 261x113 4 67 67 238 131 49 72125 2.7 0.0 8.5 12313 133 261x23 4 67 66 265 140 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 265 143 50 73100 13.3 2.7 8.3 12161 144 261x224 3 66 65 255 139 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 18.7 2.0 8.2 12233 123 261x213 4 67 67 264 143 50 73100 18.7 2.0 8.2 12233 123 261x214 4 67 67 264 143 50 73100 18.7 3.3 8.1 12108 154 261x234 4 67 67 264 143 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 73100 1.0 5.3 8.2 12046 132 261x215 5 67 67 264 143 50 73100 1.0 5.3 8.2 12046 132 261x215 5 67 67 265 149 50 73100 1.0 5.3 8.2 12046 132 261x215 5 67 67 265 149 50 73100 1.0 5.3 8.1 11868 132 261x215 5 67 67 265 149 50 73100 1.0 5.3 8.2 12066 132	190	P3055W	6	62	62	277	140	50	73100	0.0	0.0	10.4	15516
184 282x311	182	282x311	3	66	66	265	143	50	73100	18.0	5.3	9.4	13666
181 282x311	183	282x311	5	66	66	244	132	50	73100	9.3	5.3	9.3	13417
187 03x311	184	282x311	5	66	66	259	143	50	73100	3.3	3.3	9.1	13344
150	181	282x311	4	66	66	257	134	50	73100	21.3	4.0	9.1	13035
161 261x241	187	03x311	4	67	68	228	127	50	73100	1.3	0.7	9.0	12906
89 261x169 4 67 67 260 141 50 73100 6.7 0.0 8.7 12684 143 261x223 4 67 66 254 139 50 73100 8.7 3.3 8.4 12561 60 261x140 3 66 66 253 140 50 73100 5.3 4.0 8.5 12513 127 261x207 4 65 65 271 148 50 73100 22.0 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12332 126 261x136 4 67 67 238 131 49 72125 2.7 0.0 8.5 <t></t>	150	261x230	4	67	67	256	139	50	73100	17.3	1.3	8.6	12823
143 261x223 4 67 66 254 139 50 73100 8.7 3.3 8.4 12561 60 261x140 3 66 66 259 145 50 73100 7.3 2.7 8.5 12510 18261x98 4 66 66 253 140 50 73100 22.0 5.3 8.3 12372 125 261x207 4 65 65 271 148 50 73100 22.0 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12372 186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x224 3 66 65 255 139 50 <t< td=""><td>161</td><td>261x241</td><td>4</td><td>67</td><td>67</td><td>263</td><td>144</td><td>50</td><td>73100</td><td>12.7</td><td>7.3</td><td>9.0</td><td>12809</td></t<>	161	261x241	4	67	67	263	144	50	73100	12.7	7.3	9.0	12809
60 261x140 3 66 66 259 145 50 73100 7.3 2.7 8.5 12510 18 261x98 4 66 66 253 140 50 73100 5.3 4.0 8.5 12453 127 261x207 4 65 65 271 148 50 73100 22.0 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12346 186 783111 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 18.7 2.0 8.2 12233 261x2124 3 66 65 255 139 50 73100 11.3 2.7 8.1 12193 <td>89</td> <td>261x169</td> <td>4</td> <td>67</td> <td>67</td> <td>260</td> <td>141</td> <td>50</td> <td>73100</td> <td>6.7</td> <td>0.0</td> <td>8.7</td> <td>12684</td>	89	261x169	4	67	67	260	141	50	73100	6.7	0.0	8.7	12684
60 261x140 3 66 66 259 145 50 73100 7.3 2.7 8.5 12510 18 261x98 4 66 66 253 140 50 73100 22.0 5.3 8.5 12572 125 261x205 4 66 66 256 140 50 73100 22.0 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12346 186 78x311 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 18.7 2.0 8.2 12233 261x2124 3 66 65 255 139 50 73100 18.7 3.3 8.1 12108 <td>143</td> <td>261x223</td> <td>4</td> <td>67</td> <td>66</td> <td>254</td> <td>139</td> <td>50</td> <td>73100</td> <td>8.7</td> <td>3.3</td> <td>8.4</td> <td>12561</td>	143	261x223	4	67	66	254	139	50	73100	8.7	3.3	8.4	12561
127 261x207 4 65 65 271 148 50 73100 22.0 5.3 8.3 12372 125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12346 186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x224 3 66 65 255 139 50 73100 13.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 13.3 2.7 8.1 12108 154 261x234 4 67 67 264 143 50 73100 10.0 2.3 8.2 <	60	261x140	3	66	66	259	145	50		7.3	2.7	8.5	12510
125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12346 186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 11.3 2.7 8.3 12169 26 261x106 5 65 64 254 143 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 <t< td=""><td>18</td><td>261x98</td><td>4</td><td>66</td><td>66</td><td>253</td><td>140</td><td>50</td><td>73100</td><td>5.3</td><td>4.0</td><td>8.5</td><td>12453</td></t<>	18	261x98	4	66	66	253	140	50	73100	5.3	4.0	8.5	12453
125 261x205 4 66 66 256 140 50 73100 10.7 5.3 8.3 12346 186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 13.3 2.7 8.3 12161 144 261x224 3 66 65 255 139 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 4.0 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 4.0 7.3 8.2	127	261x207	4	65	65	271	148	50	73100	22.0	5.3	8.3	12372
186 78x311 4 67 67 238 131 49 72125 2.7 0.0 8.5 12311 33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 13.3 2.7 8.3 12161 144 261x224 3 66 65 255 139 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 8.7 3.3 8.1 12199 56 261x136 4 65 65 253 138 50 73100 4.0 7.3 8.3 12097 56 261x136 4 66 66 62 261 149 50 72612 15.4 5.3 8.2 12073 176 261x15 5 67 67 248 13	125	261x205	4	66	66	256	140	50				8.3	12346
33 261x113 4 65 65 263 146 50 73100 18.7 2.0 8.2 12233 123 261x203 4 67 66 267 143 50 73100 13.3 2.7 8.3 12161 144 261x204 3 66 65 255 139 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 8.7 3.3 8.1 12108 154 261x234 4 67 67 264 143 50 73100 40 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 <td< td=""><td>186</td><td>78x311</td><td>4</td><td>67</td><td>67</td><td>238</td><td>131</td><td>49</td><td></td><td>2.7</td><td>0.0</td><td>8.5</td><td>12311</td></td<>	186	78x311	4	67	67	238	131	49		2.7	0.0	8.5	12311
144 261x224 3 66 65 255 139 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 8.7 3.3 8.1 12108 154 261x234 4 67 67 264 143 50 73100 4.0 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12042 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12026 94 261x16 4 67 66 266 149 <td< td=""><td>33</td><td>261x113</td><td>4</td><td>65</td><td>65</td><td>263</td><td>146</td><td>50</td><td>73100</td><td>18.7</td><td></td><td>8.2</td><td>12233</td></td<>	33	261x113	4	65	65	263	146	50	73100	18.7		8.2	12233
144 261x224 3 66 65 255 139 50 73100 11.3 2.7 8.1 12139 26 261x106 5 65 64 254 143 50 73100 8.7 3.3 8.1 12108 154 261x234 4 67 67 264 143 50 73100 4.0 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12042 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12026 94 261x16 4 67 66 266 149 <td< td=""><td>123</td><td>261x203</td><td>4</td><td>67</td><td>66</td><td>267</td><td>143</td><td>50</td><td>73100</td><td>13.3</td><td>2.7</td><td>8.3</td><td>12161</td></td<>	123	261x203	4	67	66	267	143	50	73100	13.3	2.7	8.3	12161
26 261x106 5 65 64 254 143 50 73100 8.7 3.3 8.1 12108 154 261x234 4 67 67 264 143 50 73100 4.0 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12026 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 3.3 8.1	144	261x224	3	66	65	255	139	50	73100	11.3		8.1	12139
154 261x234 4 67 67 264 143 50 73100 4.0 7.3 8.3 12097 56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12026 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x212 4 67 67 245 139 50 73100 2.7 3.3 8.1 11868 124 261x212 4 67 67 265 149 <t< td=""><td>26</td><td>261x106</td><td></td><td>65</td><td>64</td><td>254</td><td>143</td><td>50</td><td>73100</td><td></td><td>3.3</td><td>8.1</td><td>12108</td></t<>	26	261x106		65	64	254	143	50	73100		3.3	8.1	12108
56 261x136 4 65 65 253 138 50 73100 16.7 6.0 8.2 12073 176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12026 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 7.3 7.3 8.1 <t></t>	154	261x234	4	67	67	264	143					8.3	
176 261x256 4 66 66 261 149 50 72612 15.4 5.3 8.2 12042 135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12026 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 7.3 7.3 8.1 11886 124 261x215 4 67 67 265 149 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 269 151 <td< td=""><td>56</td><td>261x136</td><td>4</td><td>65</td><td>65</td><td>253</td><td>138</td><td>50</td><td>73100</td><td>16.7</td><td></td><td>8.2</td><td>12073</td></td<>	56	261x136	4	65	65	253	138	50	73100	16.7		8.2	12073
135 261x215 5 67 67 248 131 50 73100 10.0 5.3 8.2 12026 94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 2.7 3.3 8.1 11886 124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 11.3 2.7 8.0 11858 91 261x171 5 67 67 269 151													
94 261x174 5 66 67 266 143 50 73100 18.0 8.7 8.1 12004 86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 7.3 7.3 8.1 11886 124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 11.3 2.7 8.0 11858 91 261x171 5 67 67 269 151 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154													
86 261x166 4 67 66 266 149 50 73100 8.7 6.7 8.0 11916 131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 7.3 7.3 8.1 11868 124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 11.3 2.7 8.0 11858 91 261x171 5 67 67 269 151 50 73100 27.3 2.7 8.0 11805 55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154	94	261x174		66	67	266	143	50		18.0		8.1	12004
131 261x211 5 67 66 248 133 50 73100 2.7 3.3 8.1 11886 132 261x212 4 67 67 245 139 50 73100 7.3 7.3 8.1 11868 124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 6.0 2.7 7.9 11861 91 261x171 5 67 67 269 151 50 73100 27.3 2.7 8.0 11805 55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133	86	261x166	4	67	66	266	149	50		8.7	6.7	8.0	11916
124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 11.3 2.7 8.0 11858 91 261x171 5 67 67 269 151 50 73100 27.3 2.7 8.0 11805 55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133 50 73100 6.0 8.7 8.0 11735 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 5	131	261x211	5	67	66	248	133	50		2.7		8.1	11886
124 261x204 5 66 66 260 143 50 73100 6.0 2.7 7.9 11861 95 261x175 4 67 67 265 149 50 73100 11.3 2.7 8.0 11858 91 261x171 5 67 67 269 151 50 73100 27.3 2.7 8.0 11805 55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133 50 73100 16.7 10.0 8.0 11726 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 <td< td=""><td>132</td><td>261x212</td><td>4</td><td>67</td><td>67</td><td>245</td><td>139</td><td>50</td><td>73100</td><td>7.3</td><td>7.3</td><td>8.1</td><td>11868</td></td<>	132	261x212	4	67	67	245	139	50	73100	7.3	7.3	8.1	11868
95 261x175	124	261x204	5	66	66	260	143	50		6.0		7.9	
55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133 50 73100 6.0 8.7 8.0 11735 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 5	95	261x175	4	67	67	265	149	50		11.3	2.7	8.0	
55 261x135 4 67 66 256 136 50 73100 12.0 1.3 8.0 11797 133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133 50 73100 6.0 8.7 8.0 11735 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 5	91	261x171	5	67	67	269	151	50	73100	27.3	2.7	8.0	11805
133 261x213 4 66 65 274 154 50 73100 16.7 10.0 8.0 11754 13 261x93 3 66 66 262 133 50 73100 6.0 8.7 8.0 11735 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 <td< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			4										
13 261x93 3 66 66 262 133 50 73100 6.0 8.7 8.0 11735 88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50<	133	261x213	4	66	65		154	50	73100	16.7	10.0	8.0	
88 261x168 3 67 67 270 144 50 73100 9.3 4.0 8.0 11726 66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134	13	261x93		66	66	262	133	50	73100	6.0	8.7	8.0	
66 261x146 4 68 68 235 123 50 73100 7.3 0.7 7.9 11717 160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
160 261x240 4 66 66 258 142 50 73100 10.7 1.3 7.8 11659 100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
100 261x180 3 67 67 268 148 50 73100 9.3 8.7 7.8 11588 92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
92 261x172 3 67 67 273 156 50 73100 20.7 11.3 7.9 11585 102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
102 261x182 5 67 67 273 152 50 73100 26.7 5.3 7.8 11549 4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
4 261x84 4 66 66 249 132 50 73100 11.3 1.3 8.0 11537 180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483										26.7			
180 261x260 4 68 68 263 134 50 73100 4.7 3.3 7.9 11483													
			4	67	66	255	138	50	73100	12.7	5.3	7.7	11481
65 261x145 4 67 67 253 132 50 73100 6.7 2.7 7.7 11476													
53 261x133 4 66 67 257 144 50 73100 4.7 4.7 7.9 11464													
107 261x187 4 67 67 274 149 50 73100 11.3 3.3 7.7 11451													
155 261x235 5 67 67 258 133 50 73100 10.7 2.0 7.7 11445													

TRAT	Cruza	Vigor	FM	FF	AP	AM	NPL	DENS	AR	AT	PGRA	REND
159	261x239	5	67	67	251	137	50	73100	24.0	0.0	7.7	11427
59	261x139	5	66	67	243	128	50	73100	12.7	6.0	7.7	11415
57	261x137	4	66	66	251	131	50	73100	4.0	0.7	7.8	11412
71	261x151	4	66	66	262	149	50	73100	14.0	4.7	7.6	11403
37	261x117	4	67	67	251	133	50	72612	12.0	2.7	7.7	11399
146	261x226	5	65	64	259	141	50	72612	8.0	0.0	7.6	11397
51	261x131	5	66	65	254	132	50	73100	6.0	0.7	7.6	11397
20	261x100	5	66	66	266	141	50	73100	8.7	5.3	7.6	11382
139	261x219	4	67	67	251	136	50	72612	13.4	0.7	7.7	11381
147	261x227	3	66	66	260	153	50	73100	14.7	6.7	7.6	11362
177	261x257	4	67	67	266	146	50	73100	8.0	11.3	7.6	11321
178	261x258	5	66	66	265	145	49	71638	19.7	9.4	7.7	11317
121	261x201	4	66	66	252	141	50	73100	4.0	3.3	7.6	11311
43	261x123	5	67	67	261	141	50	73100	10.7	6.0	7.7	11273
152	261x232	4	66	66	252	137	50	73100	5.3	1.3	7.6	11258
153	261x233	5	66	65	268	151	50	73100	15.3	3.3	7.6	11250
80	261x160	4	67	66	251	137	50	73100	8.7	2.0	7.6	11229
28	261x108	5	66	66	265	150	50	73100	10.7	2.7	7.5	11202
19	261x99	4	67	67	267	144	50	73100	14.0	2.0	7.5	11199
52	261x132	4	67	67	254	139	50	73100	8.0	1.3	7.6	11194
77	261x157	4	66	66	268	148	50	73100	9.3	7.3	7.5	11188
58	261x138	4	66	66	242	127	50	73100	12.0	4.0	7.5	11175
35	261x115	5	67	67	254	134	49	72125	3.3	0.7	7.6	11172
29	261x109	6	67	66	255	133	50	73100	5.3	0.0	7.6	11171
30	261x110	5	65	64	265	141	48	70663	21.5	2.7	7.5	11163
185	282x311	4	63	67	253	133	50	73100	4.7	4.7	7.7	11162
156	261x236	4	67	67	252	136	50	73100	13.3	0.7	7.5	11161
128	261x208	4	67	67	259	139	50	73100	10.0	3.3	7.5	11133
90	261x170	4	67	66	266	154	50	73100	11.3	2.7	7.5	11132
27	261x107	4	65	65	256	141	50	73100	10.7	0.0	7.5	11118
173	261x253	4	66	66	276	149	50	73100	17.3	1.3	7.5	11114
42	261x122	4	66	66	258	133	49	72125	8.1	0.7	7.4	11093
70	261x150	4	66	66	253	140	50	73100	4.7	1.3	7.4	11058
8	261x88	5	66	66	245	129	49	72125	7.5	3.4	7.5	11046
	261x255	4	66	67	253	136	50	73100	6.0	3.3	7.5	11045
	261x193	4	66	66	249	129	50	73100	3.3	0.7	7.4	11044
78	261x158	3	68	68	246	132	50	73587	7.3	2.7	7.5	11043
23	261x103	5	67	66	266	144	50	73100	27.3	2.0	7.5	11040
162	261x242	4	66	66	260	145	50	73100	7.3	3.3	7.4	11038
25	261x105	4	67	67	260	146	50	73100	8.0	7.3	7.4	11005
174	261x254	4	66	66	255	136	48	70176	16.2	6.1	7.4	10999
138	261x218	4	66	66	257	137	50	72612	7.3	0.0	7.4	10997
22	261x102	5	66	66	248	122	50	73100	2.7	2.7	7.4	10991
151	261x231	3	69	69	245	126	50	72612	4.0	0.7	7.5	10978
130	261x210	5	67	66	249	130	50	73100	9.3	3.3	7.5	10964
	261x176	4	67	67	270	144	50	73100	10.0	3.3	7.5	10961
	261x144	4	66	66	257	136	49	72125	4.0	1.3	7.4	10946
	261x90	3	65	65	257	137	50	73100	11.3	4.7	7.3	10918
	261x85	4	66	66	251	129	50	73100	6.0	2.0	7.4	10908
	261x152	4	65	65	253	137	50	73100	18.7	6.0	7.5	10906
	261x185	5	67	67	265	145	50	73100	12.7	15.3	7.4	10896
	261x181	4	67	66	263	143	50	73100	36.0	4.7	7.6	10888

TRAT	Cruza	Vigor	FM	FF	AP	AM	NPL	DENS	AR	AT	PGRA	REND
15	261x95	4	66	66	262	139	50	73100	6.7	1.3	7.4	10872
11	261x91	4	65	65	261	138	50	73100	12.0	1.3	7.3	10865
82	261x162	6	67	67	263	139	50	73100	5.3	6.7	7.4	10839
158	261x238	3	69	68	239	125	50	73100	8.7	0.7	7.3	10832
115	261x195	5	66	66	263	141	49	72125	12.0	0.0	7.3	10818
63	261x143	4	66	67	264	142	50	73100	7.3	0.0	7.3	10809
9	261x89	5	66	66	245	132	50	73100	3.3	2.0	7.3	10800
85	261x165	4	66	67	258	144	50	73100	9.3	4.7	7.3	10798
134	261x214	4	67	67	256	136	50	73100	10.7	3.3	7.3	10795
1	261x81	3	66	67	242	121	50	72612	4.0	2.7	7.3	10789
21	261x101	3	66	66	250	141	50	73587	14.7	4.7	7.2	10780
109	261x189	4	69	69	253	129	50	73100	8.7	4.0	7.2	10780
6	261x86	4	67	67	240	131	48	70663	11.2	2.7	7.3	10768
16	261x96	3	67	67	246	127	50	73100	4.7	3.3	7.3	10750
117	261x197	4	66	66	255	137	50	73100	11.3	4.0	7.2	10750
149	261x229	4	67	67	243	130	50	73100	10.7	0.0	7.3	10735
81	261x161	4	67	67	257	134	50	73100	3.3	1.3	7.3	10724
93	261x173	5	68	68	256	136	50	73100	2.0	1.3	7.3	10719
167	261x247	3	68	69	237	118	48	70663	3.3	0.7	7.3	10704
166	261x246	4	67	67	257	134	50	72612	4.1	2.7	7.2	10684
136	261x216	5	67	68	256	143	50	72612	10.0	2.7	7.3	10676
79	261x159	4	67	67	241	127	50	73100	11.3	0.7	7.2	10673
172	261x252	4	67	67	262	139	50	73100	4.0	2.7	7.2	10665
14	261x94	5	67	67	243	125	50	73100	2.7	4.7	7.2	10655
98	261x178	5	68	68	248	135	50	73100	1.3	3.3	7.3	10646
141	261x221	3	67	67	263	145	50	73100	10.0	2.7	7.2	10643
106	261x186	4	66	67	258	141	50	73100	12.0	0.7	7.2	10621
179	261x259	4	67	67	263	155	49	71638	7.1	3.5	7.2	10618
157	261x237	4	67	66	256	134	50	73100	6.0	0.0	7.2	10599
45	261x125	5	66	66	250	139	50	73100	12.0	4.7	7.1	10541
114	261x194	4	68	68	256	135	50	73100	13.3	4.7	7.0	10534
84	261x164	3	67	67	264	147	50	73100	12.7	17.3	7.2	10521
142	261x222	3	67	67	254	135	50	73100	17.3	4.7	7.1	10489
	261x148	4	66	66	235	130	50	73100	11.3	0.0	7.1	10482
	261x183	4	67	68	256	142	50	73100	4.0	2.0	7.1	10478
	261x177	5	67	67	270	145	50	73100	11.3	4.7	7.1	10474
3	261x83	5	67	66	242	120	48	70176	2.0	0.0	7.1	10467
99	261x179	4	68	67	267	150	50	72612	12.1	11.3	7.0	10464
122	261x202	5	67	66	252	139	48	70663	4.8	2.7	7.0	10460
	261x142	4	66	66	258	139	50	73100	6.7	2.7	7.0	10447
	261x124	4	66	66	255	136	50	72612	6.8	6.0	7.0	10377
		5	64	65	251	136	50	73100	4.0	2.0	6.9	10372
	261x196	5	68	68	244	125	48	70663	6.3	0.0	7.1	10369
	261x155	4	67	67	251	130	50	72612	2.7	2.0	7.0	10365
38	261x118	5	67	67	258	130	48	70663	13.3	0.7	7.1	10343
171	261x251	4	67	67	265	148	50	73100	9.3	6.0	7.0	10313
48	261x128	5	65	64	249	137	50	73100	12.7	1.3	6.9	10305
	261x248	5	68	69	253	136	49	72125	8.3	0.0	7.0	10304
	261x228	5	68	68	260	144	50	73100	20.7	1.3	6.9	10303
	261x217	4	68	68	244	127	50	72612	8.6	2.7	7.0	10272
	261x167	3	67	67	252	143	47	68226	12.2	9.5	6.9	10272
	261x244	4	67	68	262	141	49	71638	19.4	0.0	7.0	10260
	261x156	4	65	65	254	132	50	73100	4.0	5.3	6.8	10234
		-			- '							-

TRAT	Cruza	Vigor	FM	FF	AP	AM	NPL	DENS	AR	AT	PGRA	REND
41	261x121	4	67	66	257	138	50	73100	16.0	2.7	6.9	10209
73	261x153	4	66	67	247	121	50	72612	5.4	5.3	6.9	10173
126	261x206	4	68	67	251	142	50	73100	28.7	4.0	6.8	10096
39	261x119	5	66	67	248	125	48	70663	12.0	1.3	6.9	10072
54	261x134	5	67	66	250	133	50	73100	8.7	2.0	6.8	10069
67	261x147	3	67	68	250	129	48	70663	16.2	1.3	6.8	10048
165	261x245	4	67	67	261	141	50	73100	7.3	4.0	6.8	10030
129	261x209	3	67	67	251	131	50	73100	6.0	9.3	6.8	10029
50	261x130	4	67	67	260	141	50	73100	2.0	1.3	6.8	10013
170	261x250	3	69	69	253	135	50	73100	2.7	3.3	6.8	9984
111	261x191	4	66	66	254	139	49	71638	4.0	2.8	6.6	9935
24	261x104	4	69	70	257	137	50	73100	22.7	0.0	6.8	9925
46	261x126	5	66	66	251	136	50	72612	4.7	1.3	6.7	9900
61	261x141	4	68	68	258	136	49	72125	8.0	2.0	6.6	9879
110	261x190	4	66	66	245	115	49	72125	0.0	2.0	6.6	9864
34	261x114	5	65	65	246	124	43	62866	4.4	0.7	6.6	9840
40	261x120	4	66	67	245	126	46	67252	6.2	1.3	6.6	9814
69	261x149	4	66	66	241	129	49	71638	1.3	0.0	6.6	9776
108	261x188	4	67	67	264	139	49	71638	9.7	1.4	6.5	9755
119		4	66	66	262	147	50	73100	18.7	2.7	6.5	9593
104	261x184	4	68	68	256	136	50	73100	13.3	1.3	6.4	9465
7	261x87	3	67	67	244	127	49	71150	9.4	0.0	6.4	9456
17	261x97	4	66	66	242	130	50	73100	6.7	3.3	6.3	9396
36	261x116	4	69	69	237	119	45	65790	9.9	4.4	6.4	9337
83	261x163	3	65	66	259	142	50	73100	12.7	5.3	6.2	9326
31	261x111	4	67	67	257	129	50	73100	18.7	12.0	6.2	9208
74	261x154	5	66	66	248	124	41	60429	10.5	0.9	6.2	9183
145	261x225	4	68	69	245	130	49	71150	6.7	0.7	6.2	9148
2	261x82	4	62	62	232	119	48	70176	1.3	1.3	6.1	9130
47	261x127	4	65	65	252	131	50	73100	3.3	6.0	6.0	9060
118	261x198	5	67	67	251	135	50	73100	4.0	0.7	6.0	8966
169	261x249	4	67	67	246	121	47	68714	8.8	0.0	5.8	8676
112	261x192	4	69	69	242	125	44	64328	9.5	2.4	5.8	8506
49	261x129	5	66	66	249	132	50	73100	7.3	1.3	5.5	8209
32	261x112	4	66	66	240	111	38	55068	3.3	0.0	5.2	7742
120	261x200	5	67	66	262	142	50	72612	6.7	10.0	5.2	7605
163	261x243	4	68	69	248	134	42	61891	7.3	1.0	4.6	6819

Cuadro 20. Promedios de variables evaluadas en la localidad de El Salitre, San Martin Hidalgo, Jalisco, 2015T.

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
192	P3164W	60	62	202	100	46	67252	1.1	10.8	44	0	8.7	7.4	10762
88	261x168	62	66	246	133	47	67983	4.3	0.0	50	2	8.5	7.2	10491
190	P3055W	64	66	228	109	47	68714	1.0	5.4	43	2	8.3	7.0	10073
133	261x213	65	67	247	130	48	69445	2.1	7.4	53	4	8.6	6.9	9985
14	261x94	61	64	233	122	46	67252	1.1	6.4	44	1	7.6	6.5	9434
57	261x137	59	61	239	125	42	61404	2.4	3.7	44	2	7.5	6.4	9308
189	Cimarrón	68	69	205	93	42	61404	0.0	7.3	39	12	7.2	6.2	9044
157	261x237	65	68	228	116	49	71638	13.1	5.0	48	2	7.5	6.2	9024
144	261x224	60	61	247	125	49	71638	1.0	1.0	44	2	7.1	6.1	8910
137	261x217	60	63	226	117	44	64328	7.1	2.3	45	4	7.3	6.1	8890
84	261x164	67	68	237	130	42	61404	13.6	18.1	52	1	7.2	5.9	8558
188	DK2027Y	68	69	210	102	46	67252	1.0	4.5	42	5	6.8	5.8	8486
130	261x210	63	64	242	128	49	70907	7.3	13.4	43	1	7.3	5.9	8479
123	261x203	64	66	230	114	44	63597	8.0	3.4	43	3	6.8	5.8	8431
182	282x311	61	65	239	128	46	66521	6.6	8.7	43	2	6.6	5.7	8295
37	261x117	63	65	227	119	46	67252	3.3	5.5	45	6	6.8	5.7	8283
75	282x311	64	66	231	114	48	70176	8.3	2.1	40	4	6.8	5.7	8254
180	261x260	65	67	222	112	49	70907	7.1	3.1	42	3	6.8	5.7	8244
184	282x311	65	67	227	110	44	63597	4.5	5.7	41	6	6.5	5.6	8190
186	78x311	64	67	200	100	49	70907	0.0	6.2	47	5	7.1	5.6	8186
81	261x161	62	65	239	118	48	69445	10.4	2.0	46	2	6.1	5.6	8142
59	261x139	62	64	226	126	40	58480	3.5	16.6	43	4	6.7	5.6	8121
100	261x180	61	64	249	133	48	70176	8.2	10.5	42	5	6.6	5.6	8087
89	261x169	66	68	238	126	46	66521	8.7	4.4	45	4	6.5	5.6	8071
135	261x215	59	62	235	118	42	60673	3.5	8.3	38	3	6.3	5.5	8035
78	261x158	62	66	247	129	45	65790	2.2	14.5	43	0	6.5	5.4	7960
178	261x258	64	66	236	115	43	62866	8.4	3.4	36	3	6.5	5.5	7927
163	261x243	61	63	227	119	45	65059	5.7	3.4	43	6	6.5	5.4	7903
146	261x226	69	70	220	119	46	67252	7.4	6.7	47	2	6.4	5.4	7791
125	261x205	62	63	237	126	48	70176	4.9	21.7	45	2	6.4	5.4	7740
101	261x181	69	71	226	118	46	67252	7.6	9.0	37	1	6.3	5.3	7716
109	261x189	66	67	239	128	48	70176	6.3	2.1	44	0	6.2	5.3	7689
24	261x104	60	64	240	121	46	67252	7.7	4.3	40	4	6.1	5.3	7652
96	261x176	63	67	240	126	48	69445	6.3	2.1	47	2	6.2	5.3	7618
185	282x311	67	69	215	106	47	67983	2.0	4.3	41	5	6.2	5.3	7608
150	261x230	61	63	246	132	46	67252	8.3	3.2	45	4	6.2	5.3	7593
72	261x152	63	67	231	114	44	64328	12.5	4.5	43	5	6.1	5.2	7546
104	261x184	63	65	239	125	46	66521	11.1	0.0	46	3	6.1	5.1	7517
141	261x221	63	65	243	121	44	63597	9.1	3.5	39	4	6.1	5.2	7470
85	261x165	63	66	227	121	45	65059	4.6	2.2	44	1	6.2	5.1	7418
63	261x143	64	66	225	123	39	57018	6.1	4.0	42	4	6.2	5.2	7410
87	261x167	65	68	233	130	46	66521	5.5	7.7	43	1	5.9	5.1	7399
35	261x115	60	64	238	124	44	64328	8.0	0.0	39	3	6.0	5.1	7356
143	261x223	63	65	226	126	38	55556	9.3	3.9	48	0	5.9	5.1	7345
151	261x231	65	68	228	118	44	64328	5.7	7.0	46	3	6.4	5.1	7312
142	261x222	61	64	233	127	42	61404	8.3	3.7	44	2	5.9	5.0	7301
29	261x109	63	66	227	114	46	67252	3.3	2.2	44	3	6.0	5.0	7295
103	261x183	66	68	242	148	47	68714	4.3	7.4	43	0	6.0	5.0	7289
124	261x204	68	70	232	128	46	66521	9.1	7.7	46	3	6.0	5.0	7283
53	261x133	66	68	218	110	46	67252	0.0	3.3	41	6	5.9	5.0	7267

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
160	261x240	67	69	230	124	38	54825	11.6	19.1	47	3	6.0	4.9	7254
92	261x172	70	72	221	120	42	60673	12.5	9.5	43	2	6.0	5.0	7252
153	261x233	65	67	236	132	45	65790	8.6	9.8	46	0	5.9	5.0	7226
44	261x124	62	64	230	119	45	65059	7.9	4.5	45	3	5.9	5.0	7192
42	261x122	61	63	226	114	47	68714	3.2	6.4	44	2	5.9	4.9	7184
147	261x227	61	64	243	138	44	64328	4.8	7.8	41	1	5.8	4.9	7179
168	261x248	63	67	214	104	43	62135	2.3	3.7	45	7	5.8	4.9	7169
169	261x249	66	67	244	132	44	64328	2.4	2.3	44	3	5.9	4.9	7165
55	261x135	67	69	219	110	42	61404	4.8	5.9	44	4	5.6	4.9	7112
140	261x220	66	68	219	115	47	67983	10.8	9.5	44	2	5.8	4.9	7098
39	261x119	61	63	228	113	44	64328	6.7	4.7	37	6	5.7	4.9	7092
33	261x113	64	65	240	124	47	67983	2.2	6.4	40	4	5.7	4.9	7082
115	261x195	66	67	235	119	40	57749	4.8	7.7	39	4	5.9	4.9	7067
45	261x125	64	66	220	120	47	68714	6.4	6.2	46	4	5.8	4.8	7045
164	261x244	67	69	227	125	45	65790	7.8	3.4	51	2	5.8	4.8	7009
175	261x255	69	70	211	112	39	57018	17.0	7.5	46	1	5.7	4.8	6988
154	261x234	68	70	229	122	47	68714	6.4	17.2	42	2	5.9	4.8	6986
17	261x97	64	66	227	115	46	67252	3.1	3.3	36	3	5.7	4.8	6961
161	261x241	67	70	224	124	40	58480	21.2	8.7	40	5	5.8	4.8	6955
120	261x200	64	66	221	122	40	58480	3.3	7.3	42	3	5.6	4.8	6924
187	03x311	65	68	198	101	47	68714	0.0	19.1	41	0	6.7	4.8	6906
66	261x146	68	70	217	113	40	57749	12.8	6.7	43	11	5.6	4.8	6896
127	261x207	62	65	240	124	45	65059	10.5	3.4	40	7	5.6	4.7	6894
13	261x93	69	71	213	114	45	65790	6.9	4.3	40	6	5.5	4.7	6890
105	261x185	70	71	220	121	44	64328	12.9	3.3	44	6	5.6	4.8	6887
173	261x253	66	68	247	123	44	63597	16.2	4.6	41	7	5.1	4.7	6875
18	261x98	65	67	212	106	45	65790	5.4	6.5	42	4	5.7	4.7	6855
174	261x254	62	65	239	124	42	60673	11.9	6.8	39	2	5.6	4.7	6847
77	261x157	68	69	217	110	42	60673	3.8	0.0	44	3	5.7	4.7	6844
176	261x256	64	68	236	126	42	60673	10.9	3.6	38	5	5.6	4.7	6827
132	261x212	68	70	214	109	36	52632	4.1	7.1	39	4	5.2	4.7	6805
12	261x92	65	66	217	117	43	62135	4.7	10.5	45	4	5.5	4.7	6762
26	261x106	61	64	244	128	40	57749	9.1	9.1	42	2	5.6	4.7	6761
95	261x175	68	70	219	118	48	69445	6.5	6.4	45	2	5.6	4.7	6759
167	261x247	68	71	209	111	42	60673	15.1	4.7	40	7	5.5	4.6	6714
126	261x206	60	62	239	130	42	60673	8.1	6.1	36	1	5.5	4.6	6702
76	261x156	62	65	220	112	45	65790	2.3	3.4	42	10	5.7	4.6	6683
68	261x148	66	69	212	109	44	63597	2.3	5.0	45	5	5.4	4.6	6681
128	261x208	65	68	215	108	45	65790	12.4	5.6	42	5	5.5	4.6	6680
159	261x239	62	65	240	132	45	65790	6.5	1.1	41	2	5.5	4.6	6677
191	DAS2362	68	70	206	96	42	60673	2.4	6.0	32	14	5.7	4.6	6662
97	261x177	63	66	251	133	37	53363	16.3	4.4	39	6	5.4	4.6	6662
112	282x311	62	66	225	111	39	57018	4.9	7.7	40	6	5.8	4.6	6641
23	261x103	65	68	232	125	43	62135	10.8	9.3	37	3	5.4	4.6	6640
80	261x160	70	72	195	94	43	62866	9.3	13.8	48	8	5.5	4.6	6613
52	261x132	67	69	214	116	46	67252	5.4	0.0	43	6	5.3	4.5	6570
131	261x211	68	71	209	104	48	69445	8.8	11.7	45	1	5.4	4.5	6563
158	261x238	64	65	238	125	42	61404	4.8	4.8	42	2	5.3	4.4	6500
48	261x128	63	65	218	111	43	62135	5.8	1.4	42	6	5.4	4.5	6471
82	261x162	67	69	230	117	38	54825	17.4	6.8	42	7	5.3	4.4	6439
138	261x218	65	67	212	110	46	66521	2.0	7.0	46	3	5.4	4.4	6429
99	261x179	63	67	255	146	42	61404	16.5	10.8	44	6	5.3	4.4	6408
65	261x145	64	66	224	117	44	63597	3.6	4.5	44	6	5.2	4.4	6400

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
70	261x150	64	66	223	117	38	54825	10.7	9.3	41	1	5.3	4.4	6385
156	261x236	70	71	217	117	42	60673	28.9	9.5	44	1	5.4	4.4	6366
58	261x138	69	71	204	103	40	58480	4.2	5.1	37	8	5.2	4.4	6350
106	261x186	63	67	237	125	45	65790	8.4	4.7	39	3	5.6	4.4	6342
139	261x219	70	71	214	112	51	74561	6.9	5.7	44	5	5.2	4.4	6315
86	261x166	65	67	254	141	42	61404	12.9	1.1	43	4	5.2	4.4	6310
27	261x107	66	69	214	109	47	67983	3.2	10.8	40	1	5.2	4.4	6307
177	261x257	65	68	238	121	38	54825	13.2	1.5	37	5	5.2	4.3	6301
46	261x126	65	68	219	110	43	62866	11.6	6.8	44	7	5.2	4.3	6279
5	261x85	66	68	218	100	42	61404	20.2	2.4	39	3	5.1	4.3	6275
6	261x86	64	67	210	105	44	63597	4.4	11.0	41	5	5.1	4.3	6250
20	261x100	62	65	232	130	45	65790	7.8	10.0	35	2	5.2	4.3	6248
162	261x242	64	68	233	125	42	61404	15.1	9.6	39	4	5.1	4.3	6221
7	261x87	66	68	221	112	43	62866	12.2	6.8	38	8	5.2	4.3	6216
134	261x214	68	71	213	109	48	69445	2.1	2.1	42	5	5.1	4.3	6215
69	261x149	65	67	221	117	41	59942	7.7	4.8	43	5	5.1	4.3	6210
181	282x311	68	71	206	104	35	51170	3.1	7.8	36	6	5.0	4.3	6202
172	261x252	69	71	215	111	43	62135	10.7	9.4	41	2	5.2	4.3	6195
129	261x209	66	67	231	121	41	59211	6.1	6.3	36	3	5.1	4.3	6186
56	261x136	64	66	226	114	36	51901	0.0	14.7	33	3	5.1	4.3	6116
15	261x95	64	68	214	107	44	64328	6.0	2.2	39	4	5.0	4.2	6116
121	261x201	67	69	214	107	42	61404	7.8	3.9	37	6	5.0	4.2	6105
30	261x110	59	62	228	108	44	64328	7.6	9.4	39	3	4.9	4.2	6094
16	261x96	66	69	204	104	47	67983	2.2	1.1	38	3	5.0	4.2	6070
107	261x187	65	69	223	115	43	62866	24.2	1.3	44	5	5.1	4.2	6061
40	261x120	61	64	232	116	44	63597	2.3	10.4	36	7	4.9	4.1	6011
50	261x130	64	67	229	124	46	66521	6.7	2.2	42	9	5.0	4.2	6006
83	261x163	65	67	239	130	49	71638	5.0	4.1	48	3	4.9	4.1	5999
122	261x202	65	66	213	114	44	64328	6.8	11.4	40	5	4.9	4.1	5980
43	261x123	72	73	216	109	47	68714	14.8	10.9	36	6	5.0	4.1	5964
136	261x216	68	71	224	123	36	52632	22.8	9.7	44	3	4.9	4.1	5963
47	261x127	68	70	219	118	45	65790	9.0	15.5	46	4	4.9	4.1	5956
165	261x245	67	70	221	117	45	65790	7.7	3.7	41	9	5.0	4.1	5956
67	261x147	65	67	216	115	41	59942	2.9	12.1	38	5	4.4	4.1	5954
114	261x194	65	68	209	101	42	60673	2.4	6.1	43	2	4.9	4.1	5942
28	261x108	66	67	233	120	46	67252	10.2	10.2	40	4	5.4	4.1	5917
36	261x116	66	68	213	118	36	52632	3.3	1.9	35	2	4.9	4.1	5893
91	261x171	68	71	230	119	42	60673	13.3	6.0	43	3	5.0	4.0	5891
183	282x311	69	72	206	106	40	58480	8.7	18.1	33	3	4.8	4.1	5841
119	261x199	66	69	234	119	47	67983	8.3	9.0	39	5	4.8	4.0	5837
148	261x228	70	71	203	120	40	58480	3.7	2.5	40	1	4.8	4.0	5828
93	261x173	69	71	215	114	45	65059	6.7	9.0	37	4	4.9	4.0	5814
94	261x174	67	69	211	109	43	62135	9.7	21.4	39	5	4.8	4.0	5809
90	261x170	63	67	250	132	43	62135	19.8	4.7	43	2	4.8	4.0	5791
10	261x90	66	70	204	96	45	65790	4.5	8.7	42	5	4.8	4.0	5764
25	261x105	66	68	221	115	39	56287	1.6	8.9	37	2	4.8	4.0	5757
74	261x154	63	67	189	88	41	59211	6.2	9.8	40	8	4.8	3.9	5751
149	261x229	68	70	221	118	37	54094	2.9	14.4	33	4	4.7	4.0	5738
118	261x198	67	69	211	113	40	57749	8.1	11.8	38	2	4.7	4.0	5730
155	261x235	67	69	232	123	44	63597	5.6	4.7	41	9	4.7	3.9	5712
73	261x153	67	69	213	101	37	53363	3.6	4.7	30	0	4.6	3.9	5655
171	261x251	65	66	224	112	40	57749	1.1	7.4	39	2	4.8	3.8	5605
9	261x89	65	69	187	85	42	60673	0.0	10.5	43	7	4.6	3.8	5560

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
113	261x193	64	66	216	111	43	62135	1.3	10.1	44	2	4.5	3.8	5552
62	261x142	67	69	220	115	38	54825	9.2	5.3	33	3	4.6	3.8	5539
110	261x190	65	67	227	114	35	51170	8.4	14.3	36	3	4.5	3.8	5515
3	261x83	61	64	204	89	41	59942	1.1	6.3	37	4	4.5	3.8	5506
79	261x159	67	68	208	108	35	50439	3.4	7.9	30	10	4.6	3.9	5486
111	261x191	65	67	210	108	44	64328	4.9	4.7	36	4	4.5	3.8	5467
21	261x101	65	66	223	121	37	54094	6.2	2.2	35	2	4.4	3.7	5430
117	261x197	65	67	216	107	39	56287	14.2	6.6	37	7	4.4	3.7	5428
61	261x141	64	67	231	115	36	51901	16.8	5.2	36	10	4.6	3.7	5404
34	261x114	66	68	201	96	35	50439	1.3	0.0	31	8	4.4	3.7	5396
31	261x111	69	71	220	114	40	57749	17.6	7.6	43	3	4.5	3.7	5391
60	261x140	70	71	204	104	41	59942	2.1	4.3	35	2	4.6	3.7	5372
152	261x232	69	72	199	103	35	51170	17.2	6.9	33	9	4.4	3.7	5361
2	261x82	62	64	205	88	40	58480	0.0	10.0	37	3	4.3	3.7	5314
145	261x225	66	68	228	118	46	67252	7.7	8.8	39	4	4.4	3.7	5287
116	261x196	67	69	201	100	33	48246	8.3	8.6	30	4	4.3	3.6	5270
54	261x134	67	69	217	110	32	46053	2.6	4.2	33	1	4.3	3.6	5251
170	261x250	69	71	214	104	44	63597	9.9	3.6	38	5	4.6	3.6	5234
102	261x182	70	72	213	111	42	60673	10.2	7.5	37	6	4.5	3.6	5215
64	261x144	66	69	217	111	36	51901	1.1	8.2	32	5	4.2	3.5	5120
71	261x151	68	70	226	112	41	59211	9.7	12.6	38	4	4.1	3.5	5108
22	261x102	67	70	212	109	39	56287	2.2	10.9	42	8	4.2	3.5	5048
41	261x121	65	69	202	103	35	51170	14.6	5.0	31	8	4.1	3.4	4939
51	261x131	65	68	222	114	39	56287	2.2	11.9	33	6	4.0	3.4	4920
179	261x259	71	73	232	132	41	59942	3.9	11.9	36	6	4.0	3.3	4830
98	261x178	71	74	198	98	36	51901	7.7	20.0	37	11	4.0	3.3	4815
1	261x81	64	66	225	110	24	35088	9.4	0.0	25	8	4.1	3.3	4790
11	261x91	66	69	204	107	38	54825	7.1	8.2	34	7	4.0	3.3	4778
19	261x99	66	69	216	110	49	70907	5.1	7.2	42	5	4.8	3.2	4698
49	261x129	67	69	213	111	39	57018	1.2	3.5	37	8	3.9	3.2	4576
166	261x246	71	73	191	93	34	48977	0.0	10.1	30	9	3.8	3.1	4544
8	261x88	70	71	189	92	29	42398	4.5	13.0	30	8	3.5	2.9	4245
4	261x84	66	69	201	93	29	41667	7.1	8.3	24	5	3.2	2.6	3812
38	261x118	68	71	211	101	31	44591	0.0	2.3	26	6	3.1	2.6	3733
108	261x188	69	70	224	118	24	35088	2.8	4.4	22	2	3.1	2.5	3600
32	261x112	64	67	186	80	20	29240	0.0	13.3	19	8	2.4	2.0	2920

Cuadro 21. Promedios de variables evaluadas en la localidad del CUCBA, Las Agujas, Zapopan, Jalisco, 2015T.

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
100	261x180	71	71	281	167	40	58480	38.1	0.8	45	1	7.6	9.9	14961
158	261x238	70	71	275	164	44	63840	11.5	7.6	47	4	6.4	9.3	14270
189	Cimarrón	69	68	265	151	44	64328	6.9	3.0	44	6	9.8	8.4	12187
183	282x311	70	71	285	173	41	60429	11.8	0.8	44	2	9.6	8.1	11276
190	P3055W	68	69	275	160	44	64815	5.7	3.1	44	8	9.2	7.8	11165
187	03x311	70	72	262	161	44	64328	24.1	0.0	44	5	9.8	8.0	10917
99	261x179	72	72	279	169	41	59454	43.5	0.0	62	3	8.7	7.5	10624
192	P3164W	69	68	257	145	43	63353	0.8	3.2	43	6	8.1	7.5	10588
185	282x311	71	72	281	168	41	59454	33.8	4.0	43	1	9.1	7.6	10575
188	DK2027Y	68	69	272	158	44	64328	8.4	1.5	41	9	8.6	7.5	10534
53	261x133	70	71	279	174	42	61891	4.3	1.4	47	3	9.0	7.4	10445
75	282x311	71	72	272	165	41	59454	34.5	6.5	44	3	8.8	7.4	10426
89	261x169	71	72	273	167	40	58480	24.3	4.1	41	2	8.8	7.4	10420
96	261x176	71	72	276	168	40	58967	16.6	1.6	54	2	8.7	7.4	10350
34	03x311	70	72	261	164	47	68226	0.0	3.5	47	3	9.0	7.4	10348
30	261x110	69	69	284	162	42	60916	15.3	14.0	53	3	8.4	7.2	10230
88	261x168	72	72	286	165	39	56530	39.7	2.8	46	3	8.6	7.2	10191
105	261x185	70	71	283	176	40	57992	30.3	2.8	48	5	8.5	7.3	10185
63	261x143	71	71	283	165	42	61891	15.5	0.8	48	3	8.8	7.3	10169
101	261x181	70	72	281	173	44	64815	6.9	2.3	50	7	8.5	7.2	10022
93	261x173	72	72	276	169	43	62866	23.9	2.3	48	5	8.5	7.1	9987
115	261x195	69	71	272	168	42	61404	30.1	5.6	52	4	8.3	7.0	9955
130	261x210	71	72	281	172	39	57018	6.0	2.5	45	3	8.4	7.1	9950
148	261x228	73	72	281	162	41	60429	5.6	1.7	56	2	8.4	7.0	9947
117	282xB73	64	65	269	146	44	64328	15.9	29.2	41	9	7.9	6.9	9937
182	282x311	69	71	272	165	40	58967	33.2	3.3	38	2	8.5	7.1	9873
17	261x97	70	71	268	156	38	55068	22.7	2.9	52	7	8.2	7.0	9820
82	261x162	71	71	274	163	42	60916	11.3	2.4	50	3	8.1	6.9	9804
92	261x172	71	72	295	176	43	63353	13.9	0.7	51	4	8.1	6.9	9754
143	261x223	69	71	275	169	42	61891	37.1	1.5	52	4	7.9	6.7	9729
149	261x229	72	72	272	163	40	57992	17.5	2.7	43	3	8.2	6.9	9713
56	261x136	71	71	274	164	42	61891	26.1	3.9	44	2	8.7	6.9	9693
84	261x164	71	72	285	180	42	61404	42.4	2.3	52	6	8.1	6.9	9680
1	261x81	70	71	271	163	42	60916	35.6	0.8	45	1	8.1	6.9	9675
131	261x211	71	70	283	170	41	59942	40.5	4.8	49	7	8.3	6.9	9673
177	261x257	71	72	287	174	43	62378	33.8	2.3	49	7	8.0	6.9	9652
184	282x311	70	72	275	166	41	59942	34.9	10.7	40	4	8.7	6.9	9642
59	261x139	71	72	265	159	37	54581	59.2	2.7	47	3	8.2	6.8	9614
70	261x150	71	72	262	155	42	61891	14.0	4.7	47	4	8.0	6.8	9576
80	261x160	70	71	277	165	43	63353	14.9	7.7	51	7	7.9	6.8	9521
154	261x234	72	72	279	176	43	62378	43.2	0.8	48	4	8.2	6.8	9501
141	261x221	70	71	279	167	42	61404	43.5	0.8	48	1	8.0	6.7	9463
168	261x248	70	71	286	168	43	62866	22.7	3.1	52	4	7.8	6.7	9458
71	261x151	71	72	283	171	42	61404	33.6	7.6	48	2	8.0	6.7	9457
107	261x187	69	71	275	162	43	63353	10.6	0.7	51	3	7.8	6.7	9443
58	261x138	70	71	259	155	40	57992	61.6	0.0	45	7	7.9	6.7	9439
20	261x100	69	71	273	160	41	59942	10.0	5.0	46	8	8.0	6.7	9393
43	261x123	71	71	288	170	40	58967	36.1	0.0	44	5	7.8	6.6	9354
180	261x260	71	72	290	175	36	53119	51.6	2.7	46	2	7.9	6.6	9349
54	261x134	71	71	282	170	41	59454	19.6	0.8	51	3	7.8	6.6	9325

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
94	261x174	71	72	294	185	45	65790	14.2	5.2	48	3	7.9	6.7	9314
62	261x142	71	72	282	165	41	60429	10.4	0.8	47	4	7.8	6.5	9304
52	261x132	70	71	282	165	38	55556	2.5	1.7	45	3	8.3	6.6	9294
38	261x118	70	71	262	153	40	58967	16.6	12.1	46	5	7.7	6.5	9275
171	261x251	72	72	277	170	40	58480	15.7	0.8	53	4	7.9	6.6	9268
126	261x206	70	71	272	174	43	62378	27.4	5.6	49	4	7.6	6.5	9251
118	261x198	69	71	280	171	43	63353	18.9	0.0	46	2	8.1	6.6	9243
127	261x207	71	71	279	161	36	53119	15.8	4.4	47	6	7.5	6.6	9243
136	261x216	71	71	276	170	40	58967	21.2	10.9	49	1	7.6	6.5	9220
132	261x212	71	72	275	173	42	60916	24.0	2.9	45	4	7.9	6.6	9205
15	261x95	69	71	263	147	40	57992	8.8	1.8	45	2	7.7	6.5	9174
114	261x194	71	71	271	156	43	62378	30.8	10.5	55	3	7.6	6.4	9165
176	261x256	71	72	284	171	39	57018	28.2	3.4	46	7	7.8	6.6	9164
121	261x201	70	71	267	163	40	58480	40.4	2.4	43	2	7.6	6.4	9135
77	261x157	71	72	290	172	43	62866	8.4	2.4	47	5	7.7	6.5	9124
139	261x219	70	71	281	165	43	63353	40.7	1.5	46	4	7.6	6.4	9078
165	261x245	71	72	280	170	39	56530	30.6	1.7	51	3	7.8	6.4	9076
181	282x311	70	71	269	157	43	62378	25.2	21.4	40	2	7.7	6.4	9074
160	261x240	71	71	290	178	40	58480	19.2	4.1	51	7	7.9	6.5	9073
19	261x99	70	71	276	168	42	61404	5.9	3.8	44	5	7.6	6.4	9068
42	261x122	70	71	275	160	35	51657	8.1	2.3	41	1	7.6	6.4	9045
86	261x166	72	72	282	177	44	64328	35.2	1.5	53	3	7.6	6.3	8999
137	261x217	71	71	278	167	39	57505	22.7	5.2	44	2	7.5	6.3	8981
40	261x120	69	71	257	148	38	56043	30.2	0.0	43	2	7.4	6.3	8962
25	261x105	70	71	278	167	40	57992	17.6	0.8	54	2	7.5	6.4	8952
144	261x224	70	71	276	166	37	54581	22.7	9.2	46	6	7.5	6.3	8947
135	261x215	70	70	272	163	41	59942	32.7	0.9	38	5	7.5	6.4	8932
45	261x125	70	70	265	156	41	59454	0.9	14.9	46	3	7.2	6.2	8931
18	261x98	71	71	265	160	39	57018	46.1	1.0	42	2	7.6	6.4	8925
79	261x159	70	72	272	163	39	57505	27.8	4.3	46	5	7.4	6.2	8904
4	261x84	70	71	265	161	40	58967	9.0	4.3	41	5	7.6	6.3	8902
28	261x108	69	71	279	167	38	56043	14.9	17.1	43	1	7.8	6.3	8894
23	261x103	70	72	269	168	39	56530	52.9	0.8	50	2	7.5	6.3	8893
5	261x85	69	70	258	136	41	59454	44.6	0.0	44	5	7.5	6.3	8836
44	261x124	70	70	288	176	40	58967	46.2	4.1	47	4	7.5	6.3	8835
170	261x250	72	72	280	170	38	56043	31.6	0.0	45	3	7.5	6.2	8822
162	261x242	71	70	278	172	36	52632	31.4	18.5	45	3	7.3	6.2	8798
33	261x113	70	71	266	156	37	53606	21.8	13.2	45	3	7.3	6.2	8790
122	261x202	71	71	266	160	41	59454	20.1	9.1	43	3	7.3	6.2	8787
78	261x158	70	71	267	163	40	58967	37.3	8.3	44	3	7.5	6.2	8776
81	261x161	70	72	279	163	42	61404	12.6	0.8	44	2	7.3	6.2	8770
29	261x109	70	70	270	156	36	52632	36.1	3.7	47	6	7.4	6.3	8759
191	DAS2362	69	71	276	157	39	57505	20.8	5.7	40	13	7.5	6.2	8740
112	78x311	69	71	251	157	45	65302	0.0	4.3	42	17	7.6	6.2	8731
166	261x246	71	71	265	148	42	61891	32.5	0.7	45	4	7.3	6.2	8686
128	261x208	70	71	271	160	39	57505	52.6	2.6	46	5	7.4	6.2	8681
102	261x182	71	72	271	164	39	57018	25.6	0.8	46	3	7.5	6.2	8661
109	261x189	70	71	279	161	34	50195	51.7	6.9	48	5	7.1	6.1	8652
123	261x203	71	72	275	169	40	58967	44.0	7.8	49	3	7.3	6.2	8649
90	261x170	72	72	271	165	37	54094	29.3	4.8	54	4	7.3	6.1	8643
125	261x205	69	70	277	168	42	61891	46.2	4.0	47	3	7.2	6.1	8635
140	261x220	71	71	277	166	39	56530	20.8	3.4	44	3	7.2	6.1	8625
106	261x186	70	71	271	168	38	55068	33.5	3.1	48	4	7.2	6.1	8622

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
98	261x178	71	72	272	161	41	59454	2.7	9.2	48	2	7.2	6.1	8579
133	261x213	72	72	284	172	39	56530	30.8	52.3	32	19	7.3	6.1	8578
129	261x209	71	71	267	163	36	52144	9.3	18.7	49	1	7.3	6.1	8567
46	261x126	70	71	256	144	36	52144	30.2	2.0	42	4	7.1	6.0	8563
55	261x135	69	71	273	162	44	64328	29.7	1.5	45	10	7.2	6.1	8549
16	261x96	69	71	259	153	39	57505	7.3	0.0	39	8	7.2	6.1	8547
24	261x104	70	71	278	169	40	58967	27.6	11.7	48	4	7.1	6.0	8543
10	261x90	69	71	269	154	37	53606	20.6	0.8	44	5	7.0	6.0	8541
97	261x177	71	72	271	173	35	51657	66.6	1.0	48	3	7.1	6.1	8539
167	261x247	71	72	271	157	35	51170	23.7	5.1	43	2	7.2	6.1	8538
27	261x107	70	71	276	166	40	58967	16.7	4.2	46	1	7.3	6.1	8520
57	261x137	70	71	260	156	40	58480	61.4	2.5	41	4	7.2	6.1	8516
113	261x193	70	71	278	169	41	60429	24.5	2.6	42	3	7.2	6.0	8499
124	261x204	72	72	266	177	35	50682	43.4	13.7	52	3	7.0	6.0	8483
36	261x116	69	70	257	151	35	51170	14.2	13.4	40	1	7.0	5.9	8482
39	261x119	70	71	265	153	32	46296	13.6	2.2	40	5	7.2	6.1	8462
142	261x222	71	71	261	156	39	57505	36.3	5.7	45	2	7.0	6.0	8462
60	261x140	72	71	268	163	39	56530	19.3	2.5	45	4	7.1	6.0	8418
134	261x214	71	72	271	162	38	55068	32.6	4.1	43	8	6.9	5.9	8353
9	261x89	70	71	261	156	37	54094	16.6	6.3	48	6	7.0	5.9	8343
178	261x258	71	72	284	173	39	57505	25.5	3.9	39	1	7.1	5.9	8339
26	261x106	70	71	272	169	43	62866	16.9	9.2	52	2	7.0	5.9	8336
51	261x131	69	70	262	167	41	59942	39.5	4.2	44	4	7.0	5.9	8333
69	261x149	70	71	262	159	43	62866	14.8	3.0	46	4	6.9	5.9	8325
95	261x175	71	72	272	164	44	64328	35.3	10.3	48	5	6.9	5.8	8295
161	261x241	72	72	288	177	42	61404	30.2	15.8	45	5	7.2	6.0	8288
66	261x146	71	71	268	157	36	52632	13.0	7.8	42	6	6.7	5.9	8264
6	261x140	69	70	269	154	33	48733	29.6	1.4	41	3	6.9	5.8	8254
41	261x121	69	70	269	159	34	50195	8.4	7.8	43	3	6.9	5.8	8226
111	261x121	68	69	263	155	43	63353	11.3	8.8	46	5	6.8	5.8	8195
179	261x151 261x259	74	74	278	171	39	57505	27.5	4.3	50	6	7.0	5.8	8185
119	261x199	70	71	259	165	40	58967	40.0	5.9	41	3	6.8	5.7	8123
91	261x177	72	72	268	170	37	54094	33.3	1.8	44	2	6.8	5.8	8123
153	261x171 261x233	71	71	273	164	38	55068	33.3	5.4	50	<u>2</u> <u>1</u>	6.8	5.7	8106
120	261x200	70	71	273	164	39	57505	71.3	0.0	43	4	6.7	5.7	8101
146	261x200	70	71	268	161	35	50682	11.5	10.9	54	3	6.8	5.7	8100
85	261x220 261x165	71	71	269	171	40	58480	47.6	8.6	47	6	6.7	5.7	8095
11	261x103	70	70	266	158	39	56530	35.7	1.7	48	7	6.7	5.7	8076
14	261x94	70	72	272	168	39	57505	8.4	1.6	39	2	7.3	5.8	8069
13	261x94 261x93	70	72	274	162	36	52632	39.0	4.8	38	7	6.8	5.7	8039
3	261x93 261x83	68	69	251	131	39	56530	12.0	6.1	46	4	6.8	5.7	8033
64	261x83 261x144	69	71	267	155	39	57505	4.4	11.3	45	5	6.7	5.7	8020
151	261x144 261x231	70	72	259	160	38	55556	48.1	2.4	43	2	6.8	5.7	8014
48		70	72	267	162		60429	21.9	3.9	45	2	6.8	5.7 5.7	8006
	261x128		72	267		41				46	5		5.7 5.7	7993
175	261x255	71			152	37	54094 55556	52.3	1.6			6.8		
157 155	261x237	70 71	71 71	277	161	38 42	55556	38.6	8.8	39 52	9	6.7	5.7 5.6	7989 7077
155	261x235	71 70	71	274	163	42	60916	36.0	5.0	52	6	6.7	5.6 5.7	7977 7072
103	261x183	70 70	72	276	169	41	60429	40.1	13.7	43	1	6.8	5.7	7972
186	78x311	70 70	71	258	158	43	62378	0.0	2.4	39 45	28	7.0	5.7	7923
150	261x230	70 70	71	267	160	39	56530	46.4	6.2	45 52	4	6.6	5.6	7910
22	261x102	70 70	72	266	160	40	58480	72.1	3.3	53	8	6.8	5.6	7906
72	261x152	70 70	71	259	152	36	52144	59.5	2.0	44	5	6.6	5.6	7898
65	261x145	70	71	278	162	40	57992	61.3	7.4	49	7	6.5	5.6	7876

TRAT	Cruza	FM	FF	AP	AM	NPL	DENS	AR	AT	MZ	MZDA	PESM	PGRA	REND
110	261x190	72	71	273	164	42	61891	22.9	9.8	42	7	6.6	5.6	7869
156	261x236	71	71	261	163	34	49220	44.6	12.7	47	2	6.5	5.5	7867
104	261x184	70	71	271	166	40	57992	19.4	5.6	45	4	6.6	5.5	7866
73	261x153	70	71	268	152	35	51657	36.8	3.3	37	1	6.5	5.5	7794
76	261x156	70	71	258	156	37	54094	31.2	0.0	50	13	6.7	5.5	7698
31	261x111	71	71	275	155	36	52144	26.0	2.1	41	6	6.5	5.5	7692
37	261x117	72	72	265	150	32	46784	45.9	0.0	37	4	6.4	5.4	7637
32	261x112	68	70	264	142	38	55556	17.1	3.6	41	6	6.4	5.4	7629
116	261x196	71	71	263	154	33	47758	24.1	2.3	41	3	6.3	5.4	7590
172	261x252	71	72	272	170	38	55068	38.1	7.5	39	3	6.3	5.3	7541
21	261x101	71	72	263	153	43	62866	13.9	10.9	49	7	6.2	5.2	7452
159	261x239	71	71	269	163	38	55068	70.4	0.0	44	2	6.3	5.3	7452
87	261x167	72	72	263	167	36	52632	36.9	10.2	44	7	6.2	5.3	7448
7	261x87	70	71	267	157	36	52144	55.3	0.0	39	7	6.2	5.3	7447
108	261x188	71	72	280	177	39	57505	9.7	0.0	42	6	6.2	5.2	7421
173	261x253	70	72	280	171	34	49220	71.6	2.8	47	3	6.0	5.1	7386
169	261x249	71	72	264	150	37	54094	10.1	4.6	45	5	6.2	5.1	7354
152	261x232	70	71	265	162	33	48733	41.4	25.8	40	2	6.2	5.2	7351
147	261x227	70	71	269	172	37	53606	25.4	4.7	42	4	6.2	5.2	7345
61	261x141	72	71	283	177	43	62378	1.6	24.8	50	2	6.2	5.1	7299
145	261x225	70	71	265	170	35	51170	63.6	8.8	41	3	6.1	5.1	7289
12	261x92	70	71	266	161	38	55068	31.1	0.9	42	12	6.0	5.1	7271
164	261x244	72	72	264	164	30	43372	36.9	2.2	50	8	6.1	5.1	7234
138	261x218	70	71	255	160	41	59454	48.8	4.7	45	4	6.1	5.1	7195
68	261x148	70	71	265	157	37	54581	29.6	3.5	42	3	6.1	5.1	7188
8	261x88	71	72	265	147	30	43372	6.9	2.0	41	1	6.0	5.0	7114
50	261x130	71	71	285	177	39	57018	53.4	2.5	40	5	6.0	5.0	7108
74	261x154	70	71	256	141	40	58480	11.1	6.5	40	7	6.0	5.0	7104
2	261x82	68	69	253	138	34	49220	10.1	5.6	38	4	5.7	4.8	6781
47	261x127	68	70	275	161	40	58480	9.5	4.5	48	1	5.7	4.7	6726
174	261x254	70	71	251	145	27	39474	47.1	3.8	33	11	5.5	4.7	6565
67	261x147	71	71	269	158	35	51170	45.9	10.1	36	3	5.4	4.6	6509
83	261x163	70	72	267	175	40	58480	22.8	12.5	52	5	5.1	4.2	6034
49	261x129	69	71	270	161	36	52144	5.5	0.0	39	3	5.5	4.0	5776
163	261x243	71	72	259	157	27	38986	11.9	6.7	35	5	4.9	4.0	5679
35	261x115	70	71	254	143	20	28752	21.1	3.2	25	4	4.5	3.8	5340

Cuadro 22. Descripción de los tratamientos evaluados en la localidad de La Soledad, Zapotlán del Rey, Jalisco, 2015T.

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
1	261x81	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P1}
2	261x82	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P2}
3	261x83	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P3}
4	261x84	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P1}
5	261x85	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P2}
6	261x86	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P4}
7	261x87	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P3}
8	261x88	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P4}
9	261x89	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P5}
10	261x90	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P1}
11	261x91	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P2}
12	261x92	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P4}
13	261x93	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P1}
14	261x94	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P2}
15	261x95	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P3}
16	261x96	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P1}
17	261x97	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P3}
18	261x98	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P4}
19	261x99	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P2}
20	261x100	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P3}
21	261x101	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P4}
22	261x102	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P1}
23	261x103	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P2}
24	261x104	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P3}
25	261x105	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P1}
26	261x106	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P3}
27	261x107	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P4}
28	261x108	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P1]_P2}
29	261x109	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P1]_P3}
30	261x110	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P1]_P5}
31	261x111	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P4]_P1}
32	261x112	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P3}
33	261x113	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P4]_P4}
34	261x114	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P5]_P1}
35	261x115	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311xJSG-JMHC-614_P1)_P5]_P2}
36	261x116	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P3}
37	261x117	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311xJSG_Y_RMM-463_P2)_P2]_P1}
38	261x118	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P2}
39	261x119	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P3}
40	261x120	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P1}
41	261x121	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P2}
42	261x122	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P5}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
43	261x123	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P1}
44	261x124	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P3}
45	261x125	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P4}
46	261x126	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P1}
47	261x127	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P3}
48	261x128	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P5}
49	261x129	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P2}
50	261x130	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P3}
51	261x131	El Salteador	Yuriria	Guanajuato	Mesa Central	$\{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P4\}$
52	261x132	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P1}
53	261x133	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P2}
54	261x134	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P3}
55	261x135	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P1}
56	261x136	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P3}
57	261x137	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P4}
58	261x138	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P1}
59	261x139	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	$\{CML311x[CML311x[CML311xJSG_Y_RMM-440_P1)_P2a]_P2\}$
60	261x140	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P3}
61	261x141	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P1}
62	261x142	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P2}
63	261x143	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P5}
64	261x144	Camino Carboneras	Guachinango	Jalisco	Balsas	$\{CML311x[CML311xJSG-LCL-JRP-702_P4)_P1a]_P1\}$
65	261x145	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P1a]_P4}
66	261x146	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P1a]_P5}
67	261x147	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P1}
68	261x148	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P3]_P2}
69	261x149	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P3]_P3}
70	261x150	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P4]_P2}
71	261x151	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P4]_P4}
72	261x152	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311xJSG-LCL-JRP-702_P4)_P4]_P5}
73	261x153	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P1}
74	261x154	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P2}
75	261x155	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P4}
76	261x156	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P2}
77	261x157	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P3}
78	261x158	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P5}
79	261x159	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P1}
80	261x160	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P2}
81	261x161	San Miguel Cuzalapa	Cuautitlán	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P3}
82	261x162	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P1}
83	261x163	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P2}
84	261x164	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P3}
85	261x165	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P1}
86	261x166	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P2}
87	261x167	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P3}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
88	261x168	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P1}
89	261x169	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P2}
90	261x170	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P3}
91	261x171	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P1}
92	261x172	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P2}
93	261x173	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P3}
94	261x174	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P1}
95	261x175	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P2}
96	261x176	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P3}
97	261x177	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P1}
98	261x178	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P2}
99	261x179	Los Cimientos	Villa Purificación	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P3}
100	261x180	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P1}
101	261x181	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P2}
102	261x182	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P3}
103	261x183	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P1}
104	261x184	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P3}
105	261x185	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P4}
106	261x186	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P1}
107	261x187	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P2}
108	261x188	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P3}
109	261x189	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P1}
110	261x190	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P2}
111	261x191	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P5}
112	261x192	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P1}
113	261x193	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P3}
114	261x194	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P4}
115	261x195	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P1}
116	261x196	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P3}
117	261x197	San Cristóbal Honduras	San Jerónimo Coatlán	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P5}
118	261x198	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P3}
119	261x199	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P4}
120	261x200	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P5}
121	261x201	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P3}
122	261x202	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P4}
123	261x203	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P5}
124	261x204	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P1}
125	261x205	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P2}
126	261x206	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P3}
127	261x207	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P1}
128	261x208	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P2}
129	261x209	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P3}
130	261x210	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P1}
131	261x211	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P2}
132	261x212	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P5}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
133	261x213	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P1}
134	261x214	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P2}
135	261x215	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P4}
136	261x216	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P1}
137	261x217	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P2}
138	261x218	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P3}
139	261x219	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P1}
140	261x220	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P2}
141	261x221	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P5}
142	261x222	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P2}
143	261x223	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P3}
144	261x224	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P5}
145	261x225	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P1}
146	261x226	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P4}
147	261x227	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P5}
148	261x228	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P1}
149	261x229	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P2}
150	261x230	El Potrero	Huetamo	Michoacán	Balsas	$\{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P5\}$
151	261x231	El Potrero	Huetamo	Michoacán	Balsas	$\{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P1\}$
152	261x232	El Potrero	Huetamo	Michoacán	Balsas	$\{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P3\}$
153	261x233	El Potrero	Huetamo	Michoacán	Balsas	$\{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P4\}$
154	261x234	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P1}
155	261x235	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P2}
156	261x236	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P3}
157	261x237	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P2}
158	261x238	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P3}
159	261x239	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P4}
160	261x240	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P1}
161	261x241	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P2}
162	261x242	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P5}
163	261x243	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P1}
164	261x244	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P3}
165	261x245	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P5}
166	261x246	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P1}
167	261x247	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P3}
168	261x248	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P4}
169	261x249	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P1}
170	261x250	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311xG1_P1)_P4]_P3}
171	261x251	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P5}
172	261x252	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P1}
173	261x253	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P3}
174	261x254	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P4}
175	261x255	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P1}
176	261x256	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P2}
177	261x257	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P4}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
178	261x258	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P2}
179	261x259	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P3}
180	261x260	El Tablón	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P4}
181	282x311	282x311	282x311	282x311	282x311	282x311
182	282x311	282x311	282x311	282x311	282x311	282x311
183	282x311	282x311	282x311	282x311	282x311	282x311
184	282x311	282x311	282x311	282x311	282x311	282x311
185	282x311	282x311	282x311	282x311	282x311	282x311
186	78x311	78x311	78x311	78x311	78x311	78x311
187	03x311	03x311	03x311	03x311	03x311	03x311
188	DK2027Y	DK2027Y	DK2027Y	DK2027Y	DK2027Y	DK2027Y
189	Cimarrón	Cimarrón	Cimarrón	Cimarrón	Cimarrón	Cimarrón
190	P3055W	P3055W	P3055W	P3055W	P3055W	P3055W
191	DAS2362	DAS2362	DAS2362	DAS2362	DAS2362	DAS2362
192	P3164W	P3164W	P3164W	P3164W	P3164W	P3164W

Cuadro 23. Descripción de los tratamientos evaluados en la localidad de El Salitre, San Martin Hidalgo, 2015T.

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
1	261x81	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P1}
2	261x82	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P2}
3	261x83	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P3}
4	261x84	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P1}
5	261x85	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P2}
6	261x86	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P4}
7	261x87	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P3}
8	261x88	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P4}
9	261x89	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P5}
10	261x90	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P1}
11	261x91	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P2}
12	261x92	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	$\{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P4\}$
13	261x93	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P1}
14	261x94	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P2}
15	261x95	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P3}
16	261x96	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P1}
17	261x97	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P3}
18	261x98	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P4}
19	261x99	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P2}
20	261x100	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P3}
21	261x101	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P4}
22	261x102	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P1}
23	261x103	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P2}
24	261x104	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	$\{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P3\}$
25	261x105	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P1}
26	261x106	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	$\{CML311x[CML311xJSG-SRV-EAM-705_P4]_P4]_P3\}$
27	261x107	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	$\{CML311x[CML311xJSG-SRV-EAM-705_P4]_P4\}_P4\}$
28	261x108	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P2}
29	261x109	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P3}
30	261x110	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P5}
31	261x111	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P1}
32	261x112	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P3}
33	261x113	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P4}
34	261x114	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P1}
35	261x115	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P2}
36	261x116	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P3}
37	261x117	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P1}
38	261x118	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P2}
39	261x119	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P3}
40	261x120	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P1}
41	261x121	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P2}
42	261x122	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P5}
43	261x123	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P1}
44	261x124	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P3}
45	261x125	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P4}
46	261x126	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P1}
47	261x127	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P3}
48	261x128	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P5}
49	261x129	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311xJSG-LCL-JGRF-586_P1)_P1a]_P2}
50	261x130	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P3}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
51	261x131	El Salteador	Yuriria	Guanajuato	Mesa Central	$\{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P4\}$
52	261x132	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P1}
53	261x133	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P2}
54	261x134	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P3}
55	261x135	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P1}
56	261x136	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P3}
57	261x137	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P4}
58	261x138	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P1}
59	261x139	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P2}
60	261x140	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P3}
61	261x141	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P1}
62	261x142	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P2}
63	261x143	Penjamillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P5}
64	261x144	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P1}
65	261x145	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P4}
66	261x146	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P5}
67	261x147	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P1}
68	261x148	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P2}
69	261x149	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P3}
70	261x150	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P2}
71	261x151	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P4}
72	261x152	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P5}
73	261x153	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P1}
74	261x154	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P2}
75	282x311					
76	261x156	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P2}
77	261x157	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P3}
78	261x158	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P5}
79	261x159	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P1}
80	261x160	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P2}
81	261x161	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P3}
82	261x162	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P1}
83	261x163	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P2}
84	261x164	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P3}
85	261x165	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P1}
86	261x166	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P2}
87	261x167	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P3}
88	261x168	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P1}
89	261x169	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P2}
90	261x170	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P3}
91	261x171	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P1}
92	261x172	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P2}
93	261x173	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P3}
94	261x174	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P1}
95	261x175	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P2}
96	261x176	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P3}
97	261x177	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P1}
98	261x178	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P2}
99	261x179	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P3}
			Mochitlán	Guerrero	Balsas	{CML311x[CML311xJLNCM-657_P4]_P1]_P1}
100	261x180	El Salado	Mocilitian	Guerrero		
100 101	261x180 261x181	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P2}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
104	261x184	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P3}
105	261x185	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P4}
106	261x186	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P1}
107	261x187	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P2}
108	261x188	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P3}
109	261x189	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P1}
110	261x190	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P2}
111	261x191	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P5}
112	282x311					
113	261x193	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P3}
114	261x194	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P4}
115	261x195	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P1}
116	261x196	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P3}
117	261x197	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P5}
118	261x198	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P3}
119	261x199	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P4}
120	261x200	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P5}
121	261x201	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P3}
122	261x202	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P4}
123	261x203	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P5}
124	261x204	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P1}
125	261x205	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P2}
126	261x206	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P3}
127	261x207	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P1}
128	261x208	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P2}
129	261x209	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P3}
130	261x210	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P1}
131	261x211	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P2}
132	261x212	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P5}
133	261x213	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P1}
134	261x214	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P2}
135	261x215	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P4}
136	261x216	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P1}
137	261x217	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P2}
138	261x218	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P3}
139	261x219	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P1}
140	261x220	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P2}
141	261x221	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P5}
142	261x222	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P2}
143	261x223	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P3}
144	261x224	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P5}
145	261x225	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P1}
146	261x226	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P4}
147	261x227	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P5}
148	261x228	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P1}
149	261x229	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P2}
150	261x230	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P5}
151	261x231	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311xJSG_Y_RMM-457_P3)_P4]_P1}
152	261x232	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P3}
153	261x233	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P4}
154	261x234	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P1}
155	261x235	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P2}
156	261x236	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P3}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
157	261x237	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P2}
158	261x238	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P3}
159	261x239	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P4}
160	261x240	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P1}
161	261x241	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P2}
162	261x242	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P5}
163	261x243	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P1}
164	261x244	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P3}
165	261x245	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P5}
166	261x246	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P1}
167	261x247	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P3}
168	261x248	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P4}
169	261x249	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P1}
170	261x250	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P3}
171	261x251	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P5}
172	261x252	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P1}
173	261x253	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P3}
174	261x254	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P4}
175	261x255	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P1}
176	261x256	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P2}
177	261x257	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P4}
178	261x258	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P2}
179	261x259	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P3}
180	261x260	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P4}
181	282x311			•		
182	282x311		•	•		
183	282x311		•	•		
184	282x311		•			•
185	282x311		•	•		
186	78x311		•			•
187	03x311					•
188	DK2027Y					•
189	Cimarrón					
190	P3055W		•			·
191	DAS2362		•			·
192	P3164W					

Cuadro 24. Descripción de los tratamientos evaluados en la localidad del CUCBA, Zapopan, Jalisco, 2015T.

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
1	261x81	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P1]_P1}
2	261x81 261x82	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_F1]_F1]_F1}
3	261x82	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1]_P1]_P3}
4	261x84	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P1}
5	261x85	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P2]_P2}
6	261x86	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311xJLVTKV-717_P1]_P2]_P4}
7	261x87	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311xJLVTKV-717_P1]_P3]_P3}
8	261x88	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311xJLVTKV-717_P1]_P3]_P4}
9	261x89	San Andrés Milpillas	Huajicori	Nayarit	Zea diploperennis	{CML311x[CML311x(CML311xJLVTKV-717_P1)_P3]_P5}
10	261x90	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P1}
11	261x91	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P1]_P2}
12	261x92	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311xJSG-SRV-606_P2)_P1]_P4}
13	261x93	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P1}
14	261x94	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P2}
15	261x95	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P3]_P3}
16	261x96	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P1}
17	261x97	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P3}
18	261x98	Tarahumares	Guadalupe y Calvo	Chihuahua	Nabogame	{CML311x[CML311x(CML311xJSG-SRV-606_P2)_P5]_P4}
19	261x99	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P2}
20	261x100	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P1]_P3}
21	261x101	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705 P4) P1] P4}
22	261x102	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P1}
23	261x103	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P2}
24	261x104	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P3]_P3}
25	261x105	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P1}
26	261x106	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P3}
27	261x107	Potrero El Tepalcate	Nombre de Dios	Durango	Durango	{CML311x[CML311x(CML311xJSG-SRV-EAM-705_P4)_P4]_P4}
28	261x108	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P2}
29	261x109	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P3}
30	261x110	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P1]_P5}
31	261x111	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P1}
32	261x112	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P3}
33	261x113	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P4]_P4}
34	LUG03x311					•
35	261x115	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P2}
36	261x116	El Pedregal	Ocoyoacac	México	Chalco	{CML311x[CML311x(CML311xJSG-JMHC-614_P1)_P5]_P3}
37	261x117	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P1}
38	261x118	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P2}
39	261x119	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P2]_P3}
40	261x120	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P1}
41	261x121	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P2}
42	261x122	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P4]_P5}
43	261x123	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P1}
44	261x124	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P3}
45	261x125	Opopeo	Salvador Escalante	Michoacán	Chalco	{CML311x[CML311x(CML311xJSG_Y_RMM-463_P2)_P5]_P4}
46	261x126	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P1}
47	261x127	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P3}
48	261x128	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1]_P5}
49	261x129	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P1a]_P2}
50	261x130	El Salteador	Yuriria	Guanajuato	Mesa Central	$\{CML311x[CML311xJSG-LCL-JGRF-586_P1)_P1a]_P3\}$
51	261x131	El Salteador	Yuriria	Guanajuato	Mesa Central	$\{CML311x[CML311xJSG\text{-}LCL\text{-}JGRF\text{-}586_P1)_P1a]_P4\}$
52	261x132	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P1}
53	261x133	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P2}
54	261x134	El Salteador	Yuriria	Guanajuato	Mesa Central	{CML311x[CML311x(CML311xJSG-LCL-JGRF-586_P1)_P4]_P3}
55	261x135	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P1}
56	261x136	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P3}
57	261x137	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P1]_P4}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
58	261x138	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P1}
59	261x139	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	$\{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P2\}$
60	261x140	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	$\{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P2a]_P3\}$
61	261x141	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P1}
62	261x142	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P2}
63	261x143	Penajmillo de Degollado	Penjamillo	Michoacán	Mesa Central	{CML311x[CML311x(CML311xJSG_Y_RMM-440_P1)_P4]_P5}
64	261x144	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P1}
65	261x145	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P4}
66	261x146	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P1a]_P5}
67	261x147	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P1}
68	261x148	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P2}
69	261x149	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P3]_P3}
70	261x150	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P2}
71	261x151	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P4}
72	261x152	Camino Carboneras	Guachinango	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-LCL-JRP-702_P4)_P4]_P5}
73	261x153	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P1}
74	261x154	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P1]_P2}
75	282x311					
76	261x156	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P2}
77	261x157	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P3}
78	261x158	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P2]_P5}
79	261x159	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311xCML0003_P2)_P3]_P1}
80	261x160	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P2}
81	261x161	San Miguel Cuzalapa	Cuautitlan	Jalisco	Zea diploperennis	{CML311x[CML311x(CML311xCIM10003_P2)_P3]_P3}
82	261x162	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P1}
83 84	261x163 261x164	Crucero Lagunitas	Tecoanapa	Guerrero Guerrero	Balsas Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P2}
85	261x165	Crucero Lagunitas Crucero Lagunitas	Tecoanapa Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P2]_P3} {CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P1}
86	261x166	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P2}
87	261x167	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P3]_P3}
88	261x168	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P1}
89	261x169	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P2}
90	261x170	Crucero Lagunitas	Tecoanapa	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-487_P1)_P4]_P3}
91	261x171	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P1}
92	261x172	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P2}
93	261x173	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P1]_P3}
94	261x174	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P1}
95	261x175	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P2}
96	261x176	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P2]_P3}
97	261x177	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P1}
98	261x178	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P2}
99	261x179	Los Cimientos	Villa Purificacion	Jalisco	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-546_P3)_P3]_P3}
100	261x180	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P1}
101	261x181	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P2}
102	261x182	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P1]_P3}
103	261x183	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P1}
104	261x184	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P3}
105	261x185	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P2]_P4}
106	261x186	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P1}
107	261x187	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P2}
108	261x188	El Salado	Mochitlán	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-657_P4)_P3]_P3}
109	261x189	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P1}
110	261x190	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P2}
111	261x191	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P1]_P5}
112	LUG78x311					
113	261x193	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311xJSG-RMM-LCL-483_P3]_P3]_P3}
114	261x194	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P3]_P4}
115	261x195	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P1}
116	261x196	San Cristóbal Honduras	San Jerónimo Coatlan	Oaxaca	Balsas	{CML311x[CML311x(CML311xJSG-RMM-LCL-483_P3)_P4]_P3}
117	LUG282xB73	The best of		M/-i	Delese	COMPANIATION AND AND AND AND AND AND AND AND AND AN
118	261x198	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P3}

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
119	261x199	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P4}
120	261x200	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P1]_P5}
121	261x201	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P3}
122	261x202	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P4}
123	261x203	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P2]_P5}
124	261x204	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P1}
125	261x205	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P2}
126	261x206	Huixtitla	Amatepec	México	Balsas	{CML311x[CML311x(CML311xJSG-LCL-674_P3)_P4]_P3}
127	261x207	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P1}
128	261x208	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P2}
129	261x209	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P1]_P3}
130	261x210	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P1}
131	261x211	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P2}
132 133	261x212 261x213	La Lima La Lima	Tolimán Tolimán	Jalisco Jalisco	Balsas Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P2]_P5}
134	261x213 261x214	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_P2)_P3]_P1} {CML311x[CML311x(CML311xRMM-11_P2)_P3]_P2}
135	261x214 261x215	La Lima	Tolimán	Jalisco	Balsas	{CML311x[CML311x(CML311xRMM-11_F2)_F3]_F2} {CML311x[CML311x(CML311xRMM-11_P2)_P3]_P4}
136	261x216	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P1}
137	261x217	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P2}
138	261x218	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P1]_P3}
139	261x219	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311xJLHNM-661_P2)_P2]_P1}
140	261x220	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P2}
141	261x221	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P2]_P5}
142	261x222	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P2}
143	261x223	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P3}
144	261x224	Zacatlancillo	Teloloapan	Guerrero	Balsas	{CML311x[CML311x(CML311xJLHNM-661_P2)_P3]_P5}
145	261x225	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P1}
146	261x226	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P4}
147	261x227	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P2]_P5}
148	261x228	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P1}
149	261x229	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P2}
150	261x230	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P3]_P5}
151	261x231	El Potrero	Huetamo	Michoacán	Balsas	{CML311x[CML311xJSG_Y_RMM-457_P3)_P4]_P1}
152 153	261x232 261x233	El Potrero El Potrero	Huetamo Huetamo	Michoacán Michoacán	Balsas Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P3}
153	261x233	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJSG_Y_RMM-457_P3)_P4]_P4} {CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P1}
155	261x235	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P2}
156	261x236	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P2]_P3}
157	261x237	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311xJLNCM-643_P3)_P4]_P2}
158	261x238	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P3}
159	261x239	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P4]_P4}
160	261x240	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P1}
161	261x241	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P2}
162	261x242	Plan de los Timbres	Huitzuco	Guerrero	Balsas	{CML311x[CML311x(CML311xJLNCM-643_P3)_P5]_P5}
163	261x243	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P1}
164	261x244	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P3}
165	261x245	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P1]_P5}
166	261x246	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P1}
167	261x247	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P3}
168	261x248	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P3]_P4}
169	261x249	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P1}
170	261x250	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P3}
171	261x251	Las Majadas	Jutiapa	Jutiapa	Zea luxurians	{CML311x[CML311x(CML311xG1_P1)_P4]_P5}
172 173	261x252	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P1}
173 174	261x253 261x254	El Tablon El Tablon	San Antonio Huista San Antonio Huista	Huehuetenango Huehuetenango	Huehuetenango Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P3} {CML311x[CML311x(CML311xH1_P3)_P1]_P4}
174	261x254 261x255	El Tablon El Tablon	San Antonio Huista San Antonio Huista	Huehuetenango Huehuetenango	Huehuetenango Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P1]_P4} {CML311x[CML311x(CML311xH1_P3)_P2]_P1}
176	261x255 261x256	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_F3)_F2]_F1} {CML311x[CML311x(CML311xH1_F3)_P2]_P2}
170	261x250 261x257	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P2]_P4}
178	261x258	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P2}
179	261x259	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P3}
						(· · (· · · · · · · · · · · · · · · ·

TRAT	CRUZA	LUGAR	MUNICIPIO	ESTADO	RAZA	GENEALOGIA RC2
180	261x260	El Tablon	San Antonio Huista	Huehuetenango	Huehuetenango	{CML311x[CML311x(CML311xH1_P3)_P4]_P4}
181	282x311	Testigo1	•		•	
182	282x311	Testigo2	•		•	
183	282x311	Testigo3				
184	282x311	Testigo4	•		•	
185	282x311	Testigo5	•		•	
186	78x311	Testigo6	•		•	
187	03x311	Testigo7	•		•	
188	DK2027Y	Testigo8	•		•	
189	Cimarrón	Testigo9	•		•	
190	P3055W	Testigo10	•		•	
191	DAS2362	Testigo11				
192	P3164W	Testigo12				