UNIVERSIDAD DE GUADALAJARA

CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS DIVISIÓN DE CIENCIAS AGRONÓMICAS

MODALIDAD TITULACION TESIS E INFORMES, OPCIÓN TESIS

LA CALIDAD DEL FORRAJE DE LOS MAÍCES NATIVOS (Zea Mays, L.) DEL OCCIDENTE DE MÉXICO

QUE PARA OBTENER EL TÍTULO DE: INGENIERO AGRÓNOMO PRESENTA:

ANDREA LIZETTE LÓPEZ IBARRA

LAS AGUJAS, ZAPOPAN, JALISCO, OCTUBRE 2012

UNIVERSIDAD DE GUADALAJARA

CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS CARRERA DE INGENIERO AGRÓNOMO

COMITÉ DE TITULACIÓN

M.C. SALVADOR GONZÁLEZ LUNA DIRECTOR DE LA DIVISIÓN DE CIENCIAS AGRONÓMICAS PRESENTE

Con toda atención nos permitimos hacer de su conocimiento, que habiendo sido aprobada la modalidad de: TESIS E INFORMES, opción TESIS, con el título:

"LA CALIDAD DEL FORRAJE DE LOS MAICES NATIVOS (Zea mays, L.)DEL OCCIDENTE DE MÉXICO."

El cual fue presentado por la pasante:

ANDREA LIZETTE LÓPEZ IBARRA

El Comité de Titulación, designó como director y asesores, respectivamente, a los profesores:

M.C. ÁNGEL ANDRÉS JIMÉNEZ CORDERO M.C. CECILIA JIMÉNEZ PLASCENCIA DR. JOSÉ RON PARRA

DIRECTOR ASESOR ASESOR

Una vez concluido el trabajo de titulación, el Comité de Titulación designó como sinodales a los profesores:

DRA. ALCIA DE LUNA VEGA DR. LINO DE LA CRUZ LARIOS DR. MOISÉS MARTÍN MORALES RIVERA

PRESIDENTE SECRETARIO VOCAL

Se hace constar que se han cumplido los requisitos que establece la Ley Orgánica de la Universidad de Guadalajara, en lo referente a la titulación, así como el Reglamento del Comité de Titulación.

ATENTAMENTE "PIENSAYTRABAJA"

Las Agujas, Zapopan, Jal., a 17 de octubre de 2012.

M.C JORGE RAUL FORAL FLORES

PRESIDENTE DEL COMITE DE TITULACIÓN

PRA MARÍA LUISA GARCÍA SAHAGÚN SECRETARIO DEL COMITÉ DE TITULACIÓN

DIVISION DE CIENCIAS AGRONOMICAS CENTRO UNIVERSITARIO DE CIENCIAS BIOLOGICAS Y AGROPECUARIAS

DEDICATORIA

A través de esta tesis, en la cual dediqué esfuerzo y constancia del trabajo realizado, doy las gracias a Dios por haberme dado las fuerzas necesarias para elegir la carrera de ingeniero agrónomo.

Así mismo, al maestro Ángel Andrés Jiménez Cordero, que me ayudó para realizar la tesis que ahora presento, para concluir mi carrera con el conocimiento necesario para ejercerla de la mejor manera requerida.

Agradezco el apoyo de mis familiares con su esfuerzo y entusiasmo han hecho posible este sueño que empecé y seguirá con mas estudios.

AGRADECIMIENTOS

Le doy gracias a Dios por acompañarme en el transcurso de mi carrera y permitirme llegar al término de un paso más en la preparación de mi vida.

Gracias a mi familia que con su amor y comprensión me impulsaron a una superación constante.

Gracias Miguel López, María del Socorro Ibarra, Giselle López, Iván Torres y Familia.

Gracias a mi maestro Ángel Andrés Jiménez Cordero que me dio la preparación para alcanzar mi conocimiento.

Gracias a toda la gente que me ha apoyado y que me han dado ánimos para continuar con mis expectativas haciendo posible esta etapa en mi vida, porque ahora gracias a esta carrera, encontré un trabajo que me gusta, lo ejerzo para ayudar a los productores y establecerme nuevas metas que siguen en mi camino. Gracias por darme esa confianza y seguridad para seguir triunfando.

Gracias a los sinodales que tuvieron la paciencia para leer estas notas y ayudarme a ver los errores, acomodar y dar una secuencia mejor a mi tesis muchas gracias.

ÍNDICE

CAPÍTULO	CONTENIDO	PÁGINA
I	INTRODUCCIÓN	1
1.1	Objetivos	2
1.2	Hipótesis	2
II	REVISIÓN DE LITERATURA	3
2.1	Concepto de forraje	3
2.2	Importancia de los maíces nativos	3
2.2.1	Razas de maíz del occidente de México	4
2.3	El maíz como cultivo forrajero	10
2.4	Estadísticas del maíz forrajero en Jalisco	12
2.5	Calidad del forraje en el maíz	13
2.5.1 2.5.1.1	Componentes de la calidad del maíz forrajero Contenido de la digestibilidad de la materia	15
	seca	15
2.5.1.2	Carbohidratos estructurales	16
2.5.1.3	Carbohidratos solubles	17
2.5.2	Valor energético del forraje del maíz	18
2.5.2.1	La estimación de la energía de los forrajes	18
III	MATERIALES Y MÉTODOS	20
3.1	Caracterización agroclimática de Zapopan	20
3.1.1	Localización y ubicación	20
3.1.2	Clima, temperatura y precipitación pluvial	20
3.1.3	Suelo	21
3.1.4	Vegetación y fauna	23
3.1.5	Materiales genéticos	24
3.1.6	Método experimental	24
3.1.7	Diseño experimental	31
3.1.8	Método estadístico	32
3.1.9	Variables estudiadas	32
3.1.10	Desarrollo del experimento	33
IV	RESULTADOS Y DISCUCIÓN	34
4.1	Energía neta de ganancia de peso (ENG)	34
4.2	Materia seca (MS)	37
4.3	Proteína cruda (PC)	39
4.4	Fibra detergente neutro (FDN)	41
4.5	Fibra detergente ácido (FDA)	43
4.6	Lignina (LIG)	44

4.7	Digestibilidad in vitro de la materia seca (DIV)	47
V	CONCLUSIONES	50
VI	LITERATURA CITADA	51
	APENDICE	58

LISTA DE CUADROS

CUADRO	TÍTULO	PÁGINA
2.1	Producción de grano y forraje de maíz, de leche y carne de bovino en Jalisco 2000–2009.	12
2.2	Producción de ganado bovino en pie en Jalisco, precio y valor de la producción.	13
2.3	Componentes de calidad de híbridos para ensilaje, en diferentes regiones ganaderas de México.	15
3.1	Temperatura y precipitación de Zapopan en los años 2003, 2004, 2005.	21
3.2	Características físicas y químicas del suelo del CUCBA.	22
3.3	Grupos raciales y procedencia de las colectas de maíz de Jalisco, Michoacán y Nayarit.	24
3.4	Métodos de análisis utilizados para evaluar las variables.	25
	Valores de F calculada para repeticiones y tratamientos de siete variables evaluadas en 120 colectas de maíces nativos.	34
4.2	Colectas de cada raza que aparecen en los primeros grupos estadísticos para energía neta de ganancia de peso.	35
4.3	Colectas de cada raza que aparecen en el primer grupo estadístico para % materia seca.	38
4.4	Colectas de cada raza que aparecen en el primer grupo estadístico para % de proteína.	40
4.5	Colectas que aparecen en el primer grupo estadístico para el carácter % de fibra detergente neutro.	41
4.6	Colectas que aparecen en el primer grupo estadístico para % de fibra detergente ácido.	43
4.7	Colectas que aparecen en el grupo estadístico inferior para el carácter lignina.	45
4.8	Colectas que aparecen en el primer grupo estadístico del análisis de digestibilidad <i>in vitro</i> de la materia seca.	47

LISTA DE FIGURAS

FIGURA	TÍTULO	PÁGINA
4.1	Promedio de energía neta de ganancia de peso (Mcal/kg ms) de 15 grupos raciales del occidente de México.	36
4.2	Promedio de % materia seca de 15 grupos raciales del occidente de México.	38
4.3	Promedio de % proteína de 15 grupos raciales del occidente de México.	40
4.4	Promedio de % fibra detergente neutro de 15 grupos raciales del occidente de México.	42
4.5	Promedio de % fibra detergente acido de 15 grupos raciales del occidente de México.	44
4.6	Promedio de % lignina de 15 grupos raciales del occidente de México.	46
4.7	Promedio de % digestibilidad de 15 grupos raciales del occidente de México.	48

LISTA DE CUADROS DEL APÉNDICE

CUADRO A.1	TÍTULO Cuadro de ANVA de energía neta de ganancia de peso	PÁGINA
73.1	(Mcal/kg ms) en 120 colectas de maíces nativos del occidente de México.	58
A.2	Cuadro de ANVA de % materia seca en 120 colectas de maíces nativos del occidente de México.	58
A.3	Cuadro de ANVA de % proteína en 120 colectas de maíces nativos del occidente de México.	58
A.4	Cuadro de ANVA para % de fibra detergente neutro en 120 colectas de maíces nativos del occidente de México.	59
A.5	Cuadro de ANVA de % fibra detergente ácido en 120 colectas de maíces nativos del occidente de México.	59
A.6	Cuadro de ANVA del % de lignina en 120 colectas de maíces nativos del occidente de México.	59
A.7	Cuadro de ANVA del % de digestibilidad en 120 colectas de maíces nativos del occidente de México.	59
A.8	Valores de energía neta de ganancia de peso en 120 colectas de maíces nativos del occidente de México.	60
A.9	Valores de % de materia seca en 120 colectas de maíces nativos de occidente.	63
A.10	Valores de % de proteína cruda en 120 colectas de maíces nativos de occidente.	66
A.11	Valores de % fibra detergente neutro en 120 colectas de maíces nativos de occidente.	69
A.12	Valores de % fibra detergente ácido en 120 colectas de maíces nativos de occidente.	72
A.13	Valores de % de lignina en 120 colectas de maíces nativos de occidente.	75

A.14	Valores de % de digestibilidad <i>in vitro</i> en 120 colectas de maíces nativos de occidente.	78
A.15	Resultado del análisis de siete características de calidad del forraje en 120 maíces nativos de occidente.	81

RESUMEN

Esta investigación forma parte del proyecto de conservación de maíces nativos que realiza el Instituto para el Manejo y Aprovechamiento de Recursos Fitogenéticos del Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), de la Universidad de Guadalajara, con el apoyo de instituciones como SINAREFI y CONABIO. Se evaluaron 119 colectas de maíces nativos del la región noroccidente de México y un híbrido, para determinar sus propiedades forrajeras por medio del contenido de materia seca, proteína, fibra detergente neutro, fibra detergente ácido, lignina, digestibilidad in vitro de la materia seca y energía neta de ganancia de peso. La muestra de cuatro plantas por colecta, se obtuvo de parcelas sembradas en el campo experimental del CUCBA en el verano del 2009. El material vegetal se cortó en pedazos de aproximadamente 2.5x2.5 cm, se homogeneizó, se separó un kilogramo y se procesó en el Laboratorio de Calidad de Alimentos del CUCBA. Se utilizó el diseño bloques completos al azar con tres repeticiones. Los resultados obtenidos indican que diez cultivares nativos de Occidente, poseen valores de energía neta de ganancia de peso y baja lignina, estadísticamente superiores al resto de los materiales y al híbrido amarillo incluido como testigo. Las razas que aportaron las colectas sobresalientes en energía de ganancia de peso, fueron Ancho (dos colectas), Mushito (tres), Tabloncillo (tres), Elotes occidentales y Tuxpeño (una cada una). Lignina y fibra detergente ácida estuvieron relacionadas en forma inversa con la energía de ganancia de peso, pero proteína y materia seca no mostraron asociación con las fibras ni con energía de ganancia de peso. Las colectas estudiadas mostraron variabilidad y buenos valores en sus parámetros de calidad de forraje, para esperar avance genético por selección. Las mejores colectas de los grupos raciales Tabloncillo, Elotes occidentales, Tuxpeño, Ancho, Celaya y Elotero de Sinaloa, pueden constituir un compuesto con adaptación a las alturas intermedias y bajas de Occidente, mientras que las colectas de Mushito pueden ser útiles para las condiciones de la Sierra Tarasca y regiones similares. La información de los maíces nativos de esta parte de México obtenida en la presente investigación, no tiene antecedentes. Es la primera vez que se documentan las características del forraje de las razas de la vertiente del Pacífico, lo cual constituye una aportación al entendimiento sobre la forma de aprovechar esta riqueza biológica. También proporciona soporte la urgente necesidad de preservar el acervo genético que aun está en manos de los agricultores, por medio de conservación in situ y en bancos de germoplasma.

I. INTRODUCCIÓN

El maíz es una de las plantas más versátiles que existen para obtener alimentos, productos industriales y forraje. Durante siglos los agricultores tradicionales han utilizado sus maíces nativos para alimentar el ganado. En la ganadería moderna, los híbridos de maíz que se desarrollaron para producción de grano también se utilizan para forraje. No obstante, existe evidencia que una alta productividad de grano no es un indicador directo de su calidad para alimentación animal, ya que en las explotaciones ganaderas se proporciona al animal la planta completa. Este hecho implica que debe analizarse la composición de las fibras y su digestibilidad para tener el panorama completo sobre el valor potencial de un forraje.

México es centro de origen del maíz, por lo cual en nuestro país existe una gran diversidad genética de este cultivo. Sin embargo, en las últimas décadas la erosión y pérdida de poblaciones nativas debido a cambios en el entorno socioeconómico, ha puesto en riesgo la existencia y la variabilidad de una gran cantidad de estos maíces. Es necesario conservar los maíces nativos porque son el futuro sostenible de nuestra alimentación, del forraje para nuestro ganado y la materia prima para un número de actividades industriales. Como parte de la conservación, es necesario describir sus características para forraje, para aportar conocimiento sobre su uso potencial en la actividad pecuaria.

En Occidente, los agricultores y ganaderos con frecuencia usan como forraje la planta completa del maíz maduro. No obstante, la información disponible acerca de la condición nutrimental del cultivo en esta etapa fenológica es muy escasa para los maíces nativos. Se requiere, en consecuencia, ampliar el panorama del conocimiento de esta forma de aprovechamiento, para definir que parte del germoplasma conservado puede tener un uso potencial en la actividad pecuaria.

La pérdida de poblaciones de maíces nativos significa la pérdida de genes, que en forma empírica fueron identificados por su fenotipo y conservados por las culturas indígenas a través de miles de años de selección. El esfuerzo que realizan varias instituciones de nuestro país para rescatar y conservar dichas poblaciones, requiere del reconocimiento de cuáles son sus características y como pueden ser aprovechadas en el presente o en el futuro.

Una situación que se considera puede presentarse en el futuro, se relaciona con el cambio climático. En Jalisco, este fenómeno ha provocado una reducción de 6 días en la estación de crecimiento del maíz en los últimos 50 años (Ruiz *et al.*, 2000), así como modificaciones en la precipitación y la temperatura, lo que ha impactado en

la reducción de 300,000 ha de superficie sembrada de maíz de temporal, un cambio en el tipo de variedades e incluso en los patrones de cultivo.

En la región de Los Altos, una de las cuencas lecheras más importantes de México, existe la posibilidad de que el clima se vuelva más seco y más cálido debido al cambio climático, el cual daría lugar a que el germoplasma de maíz que se usa en el presente, dejaría de ser útil. Los maíces mejorados que se siembran hoy en día, tienen un valor limitado si se someten a una estación de crecimiento más corta y a una menor disponibilidad de humedad, debido principalmente a su ciclo largo y a su reducida tolerancia a la sequía (Ramírez, 2006). En estas condiciones se requiere de otra clase de germoplasma, que por sí mismo o recombinado, sea capaz de proporcionar el forraje necesario para la actividad ganadera de la región.

La caracterización de las propiedades forrajeras de los maíces nativos, puede proporcionar elementos para decidir cuales materiales tienen utilidad ante una situación ambiental como la antes descrita.

Considerando lo anterior se plantearon los siguientes objetivos e hipótesis.

1.1 Objetivos

1.1.1 Objetivo general

Describir las propiedades forrajeras de las colectas de maíz del Occidente de México.

1.1.2 Objetivos particulares

- a) Determinar cuáles colectas presentan los mejores valores nutricionales.
- b) Estimar el contenido de materia seca y digestibilidad en las poblaciones de maíz.
- c) Aportar información acerca de la condición de las fibras en la etapa de grano maduro de las poblaciones nativas.

1.2 Hipótesis

- a) Los maíces nativos de Occidente tienen diferencias en la calidad de su forraje.
- b) Existen poblaciones nativas de maíz con alta calidad para aprovecharse como forraje.

II. REVISIÓN DE LITERATURA

2.1 Concepto de forraje

El forraje es una fuente de fibra que contiene nutrientes digestibles totales en la materia seca y que proporciona energía metabólica. El forraje se puede definir como el material vegetal compuesto de tallos, hojas y en ocasiones de grano, que es ofrecido a los animales como heno, forraje fresco o ensilaje, y que tiene una alta proporción de fibra: más del 30% de fibra detergente neutra. (Wattiaux, 1994; National Research Council, 2001).

Los forrajes son indispensables en la dieta de los rumiantes porque estimulan la rumia, la salivación, las contracciones del rumen, el ritmo de salida de la digesta y contribuyen a mantener un buen nivel de contenido de grasa en la leche. (Swain y Armentano, 1994; Vaughan *et al.*, 1991; Clark y Armentano, 1993).

Los forrajes pueden agruparse en forrajes secos como heno, paja, cáscaras, o pastos que están formados de plantas de pradera; y húmedos como ensilajes de maíz, sorgo, otras gramíneas y leguminosas. Los forrajes producidos en los ranchos ganaderos son el alimento más económico para los hatos lecheros. (Wattiaux, 1994).

Los forrajes juegan papeles críticos en la vaca lechera debido a que son la fuente más económica de nutrientes (Hutjens, 1997). Los forrajes destinados al ganado vacuno, se cosechan o pastorean en una etapa fenológica previa a la formación de la semilla o antes de la maduración del grano, según el cultivo de que se trate (Wattiaux, 1994).

2.2 <u>Importancia de los maíces nativos</u>

En el presente, el fitomejoramiento de la industria de semillas en México está basado principalmente en dos o tres razas y en una reducida muestra de criollos, la mayoría de la raza Tuxpeño (Ron *et al.*, 2006). La diversidad genética del germoplasma nativo de maíz, ha sido poco explotada. El estudio de las poblaciones nativas de maíz, puede lograr información para definir la utilidad del material en el mejoramiento genético destinado a las regiones maiceras y ganaderas de México (Alcázar, 1983).

La pérdida continua de la diversidad de los maíces nativos ha renovado el interés, por su rescate, conservación y aprovechamiento, por diversas fuentes de financiamiento y conservación como el Sistema Nacional de Recursos Fitogenéticos, Consejo Nacional de Ciencia y Tecnología, instituciones y universidades públicas y empresas privadas. Como parte de la mencionada estrategia, se han colectado poblaciones nativas en la región Occidente de México, por el Instituto para el Manejo y Aprovechamiento de Recursos Fitogenéticos (IMAREFI) del Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) de la Universidad de Guadalajara, (Ron et al., 2006).

2.2.1 Razas de Maíz del Occidente de México

El maíz es una planta anual que pertenece a la familia de las gramíneas, forma parte de la tribu *maydae*, su nombre científico es *Zea mays* subespecie *mays* (Ron *et al.*, 2006). Una raza de maíz es una población con numerosas características y genes en común, que la distinguen como grupo y la diferencian de otras poblaciones, que transmite con fidelidad sus características a las generaciones siguientes y que se encuentra en un área ecológica específica (Anderson y Cutler, 1942; Wellhausen *et al.*, 1951; Hernández y Alanís 1970). A continuación se describen algunas características de las razas de maíz incluidas en esta investigación (Ron *et al.*, 2006).

Raza Ancho.

Descripción. La planta es de 2.5 metros o más alta; de madurez intermedia precoz a intermedia tardía; el grano es grande y ancho, de textura semiharinosa, dentado, de color blanco; la mazorca es mediana a corta, con 8 a 10 hileras.

Distribución. Áreas subtropicales de México y Morelos, la región de Tierra Caliente en el sur de Michoacán y en Guerrero. Las colectas de este trabajo se obtuvieron en Jalisco a alturas alrededor de 1500 msnm, probablemente derivadas de grano introducido de Morelos y Guerrero a los mercados locales para elaborar pozole.

Origen. Ortega (1979) identificó y describió esta raza. De acuerdo con Sánchez y Goodman (2000), la raza *Ancho* tiene similitud morfológica e isoenzimática con *Jala* y *Zamorano Amarillo*, y pertenece a uno de los subgrupos del Grupo de Ocho Hileras.

Usos. Es un maíz especializado para pozole. También se consume como tortilla y elote; su rastrojo se aprovecha para alimentar el ganado.

Raza Bofo.

Descripción. Planta de aproximadamente 2.5 metros; la mazorca es mediana, con 8 a 10 hileras; madurez de intermedia a intermedia-precoz. Su grano es de textura harinosa; las colectas de este trabajo son de color moteado morado con blanco.

Distribución. Se cultiva a alturas entre 1000 y 1500 msnm de la Sierra Madre Occidental en Nayarit, Durango y Jalisco. Las colectas que forman parte del trabajo se obtuvieron en Jalisco a 1138 msnm.

Origen. Proviene de la recombinación entre las razas *Tabloncillo* y *Harinoso de ocho* (Hernández y Alanís, 1970).

Usos. Su principal forma de consumo es en elote, también es bueno como pozole, tortillas o pinole. La etnia Huichol lo considera su maíz sagrado. Lo han conservado puro al sembrarlo en milpas aisladas (Hernández y Alanís, 1970).

Raza Celaya.

Descripción. Las plantas de esta raza son de 2.5 a 3 metros de altura, amacollan poco y tienen muchas hojas; las espigas son largas y ramificadas. La madurez es intermedia-tardía. Sus mazorcas son medianas a largas, gruesas y cilíndricas; tienen de 12 a 14 hileras. Los granos son de tamaño mediano, dentados, de color blanco con endosperma blanco, aleurona y pericarpio incoloros.

Distribución. Se encuentra principalmente en El Bajío, en alturas de 1200 a 1800 msnm; tiene presencia en Michoacán y Jalisco. Es un maíz muy productivo y con buen tipo agronómico. En grandes extensiones de Jalisco reemplazó a *Tabloncillo*; en León, Guanajuato, y en Querétaro desplazó a *Cónico norteño*. En el momento actual los cultivares nativos de esta raza se siembran relativamente poco, pero su germoplasma está incluido en numerosos híbridos que lo reemplazaron.

Origen. Celaya es un grupo racial relativamente reciente; es una raza agrícola muy productiva. La genealogía propuesta para Celaya por Wellhausen et al. (1951), indica la presencia de Harinoso de Ocho, Tabloncillo, Chapalote, Reventador, Olotillo, Tuxpeño, Harinoso de Guatemala, Tepecintle y teocintle. Existe alguna evidencia que Celaya pudo originarse al sur de la Mesa Septentrional, que se extiende hasta la parte baja de San Luis Potosí. Aparentemente Celaya se introdujo al Bajío al final del siglo XIX o a principios del siglo XX, y la selección continua de los agricultores produjo la actual forma modificada. Wellhausen y sus asociados opinaron que en esta raza se conjugó una parte del mejor germoplasma de América, ya que en su formación intervienen dos de las mejores razas de nuestro país, como son Tuxpeño y Tabloncillo. No es inesperado que Celaya sea junto con Tuxpeño el 50% o más de la composición genética de los híbridos modernos sembrados en el centro, occidente y noroeste de México.

Raza Dulce.

Descripción. Tiene plantas de 1.80 a 2.20 metros, con ahijamiento, madurez precoz y espigas ramificadas; tiene mazorcas cortas, gruesas, cilíndricas; con 14 a 16 hileras; los granos son delgados con la superficie arrugada, endosperma azucarado; el color del grano puede ser blanco, amarillo, naranja o morado.

Distribución. El suroeste de Jalisco, entre 1000 y 1500 msnm, norte de Jalisco, Nayarit, norte de Michoacán, Guanajuato y centro de Durango. Las colectas citadas en este documento provienen de Jalisco y Michoacán.

Origen. Wellhausen *et al.* (1951) la clasificaron como una de las cuatro Razas Exóticas Precolombinas, que se cree se introdujeron a México en épocas prehistóricas de Sudamérica. Sólo ha intervenido en la formación de *Dulcillo de Sonora*.

Usos. Es un maíz de usos especiales, como pinole, ponteduro (bolas de granos tostados y esponjados unidos con jarabe), sopas, caldos y elote.

Raza Elotes Occidentales.

Descripción. Plantas entre 2.5 y 3.0 metros; tiene espigas medianamente ramificadas; su ciclo es intermedio a intermedio-tardío. Presenta mazorcas delgadas de longitud media, con 8 a 10 hileras. El grano es harinoso a semidentado, de color morado o rojo.

Distribución. Se encuentra a alturas entre 1000 y 1500 msnm de la Sierra Madre Occidental en Michoacán, Jalisco, Guanajuato y Nayarit; hay infiltración de esta raza en maíces de Guerrero, Oaxaca y Chiapas. En el altiplano de Jalisco prospera entre los 1200 y 1600 metros de altitud.

Origen. Wellhausen y asociados la consideraron una subraza de *Harinoso de ocho*. Estudios posteriores indican que *Elotes Occidentales* es el complejo de maíz harinoso de ocho hileras del oeste de México, modificado ligeramente en la altiplanicie de Jalisco y la zona costera de Nayarit. Se trata de un grupo racial muy relacionado con *Harinoso de Ocho, Tabloncillo y Bofo*.

Usos. El color morado o rojo característico se debe a pigmentos en la aleurona y el pericarpio. Las colectas del presente estudio tienen como principal destino el grano para pozole. Se les considera buenos eloteros. También se aprovechan como pastura.

Raza Elotero de Sinaloa.

Descripción. La planta es de alrededor de 2.50 metros; tiene hojas abundantes y es medianamente amacollada; tiene espigas abiertas; su madurez es intermedia. La mazorca de estas poblaciones es entre mediana y larga, con 12 a 14 hileras; los

granos son medianos o grandes; la textura del endosperma puede variar de harinosa a cristalina. El color del grano puede ser rojo, morado o negro.

Distribución. Se le encuentra principalmente en las llanuras costeras de Sinaloa y Nayarit. Las colectas de este trabajo se obtuvieron en Nayarit y Jalisco, en altitudes de 1000 a 1500 snmn.

Origen. Fue observada primero por Hernández y Alanís (1970) a fines de la década de 1960; Ortega (1979) la clasificó como raza y Sánchez (1989) realizó la descripción correspondiente. Elotero de Sinaloa se asemeja a Chapalote en el tipo de mazorca y de planta; las diferencias principales se deben al color del grano y a la textura del endosperma. Los estudios de Sánchez (1989) muestran que Elotero de Sinaloa está asociado con Chapalote y Onaveño; Sánchez considera que proviene de Chapalote, después de cruzarse con algún maíz del tipo Blando de Sonora o Harinoso de Ocho.

Usos. De acuerdo a los agricultores que facilitaron las muestras del presente estudio, el grano proporciona una tortilla de buena calidad, mejor a la del maíz híbrido. La hoja para tamal es muy suave y flexible. El rastrojo es un buen forraje para los animales. Paradójicamente por su nombre, su uso menos frecuente en la actualidad es el elote.

Raza Jala.

Descripción. Plantas muy altas, entre 4 y 5 metros; con hojas angostas y largas; las espigas son largas y ramificacadas. Su madurez es tardía. Las mazorcas son muy largas, anchas y cilíndricas, con 12 a 14 hileras. Los granos son grandes, anchos y largos, dentados, de endosperma blanco, aleurona y pericarpio sin color. Las colectas obtenidas en el presente estudio variaron en color de grano de blanco a amarillo pálido.

Distribución. Su área principal es el Valle de Jala, Nayarit, que se encuentra a 1000 msnm, con un microclima muy específico que permitió la evolución de esta clase de maíz. Ocasionalmente se cultivó en la región de Chapala. En la actualidad es una raza en peligro de extinción; parece difícil encontrarla pura.

Origen. Jala se originó a partir de Comiteco, modificado por la intervención de Tabloncillo. La genealogía propuesta por Wellhausen et al. (1951) para esta raza incluye Tehua, Comiteco, Olotón, Chapalote, Reventador, Tabloncillo, Harinoso de Ocho y teocintle. McClintock y colaboradores (1981) encontraron evidencia citológica en los nudos cromosómicos, que conecta a Comiteco, Tabloncillo y Harinoso de Ocho con Jala.

Usos. En el presente el uso principal de esta raza es para la competencia del elote más grande, que se celebra en la población de Jala. Otras formas de aprovechar el maíz son tortillas, pozole, tamales, pinole, ponteduro y hojas para envoltura de tamal. El forraje es para los animales.

Raza Mushito de Michoacán.

Descripción. Plantas altas de tres metros o más, vainas pubescentes de intenso color rojo sol; amacolla; espiga poco ramificada. De ciclo tardío, muy productivo. Tiene mazorcas de 15 a 20 centímetros de largo, con 12 a 14 hileras, de forma por lo común cilíndrica; en las colectas de este trabajo tienen la base de la mazorca un poco ensanchada por la presencia de *Elotes Cónicos*. El grano es dentado, de color blanco, rojo, morado o negro.

Distribución. Las colectas del presente trabajo provienen de las regiones serranas de Michoacán, de 2000 metros de altitud o más.

Origen. Wellhausen *et al.* (1951) nombraron *Mushito* a un maíz tardío sembrado a 2,400 metros cerca de Suchitepec, Oaxaca. Hernández y Alanís (1970) señalaron la extensión de *Mushito* a la Meseta Tarasca de Michoacán. Sánchez (1989) describió variantes de la Sierra Tarasca y concluyó que la relación de *Mushito de Michoacán* es muy cercana a *Chalqueño*; presenta una adaptación específica a las condiciones de altitud y baja luminosidad de la Sierra Tarasca.

Usos. Rastrojo molido para el ganado, elote, tortilla, pozole, gorditas, hoja para tamales, corundas, atole dulce y ocasionalmente como abono orgánico.

Raza Pepitilla.

Descripción. Plantas de 2.5 a 3.0 metros; de amacollamiento medio y hojas abundantes; tiene espigas largas y ramificadas; su ciclo vegetativo es intermedio. La mazorca es de tamaño medio, gruesa, con un ligero adelgazamiento en el ápice; tiene entre 12 y 16 hileras, con mucho espacio entre ellas. Los granos son angostos y largos, terminados en una punta característica. Es de endosperma harinoso, con aleurona y pericarpio sin color, el grano es blanco. Es una raza muy distintiva por su grano peculiar terminado en punta.

Distribución. El área principal de esta raza fue Morelos y Guerrero en alturas de 1000 a 1500 msnm, según reportaron Wellhausen *et al.* (1951).

Origen. Se cree que *Pepitilla* proviene de la combinación de *Palomero toluqueño* o la subraza *Palomero poblano* de la Mesa Central y algún maíz dentado tropical con muchas hileras, posiblemente *Vandeño* de las llanuras costeras del Pacífico o de la Cuenca del Balsas, (Ortega, 1979; McClintock *et al.*, 1981).

Usos. Se considera que el grano de *Pepitilla* fue el que produjo la mejor calidad de tortilla, entre los maíces de México.

Raza Tabloncillo.

Descripción. Sus plantas crecen alrededor de 2.5 metros; los tallos son delgados y las hojas de anchura media; amacolla con frecuencia; sus espigas son abiertas y poco ramificadas; es de madurez intermedia. La mazorca es de tamaño medio o largo, con 8 a 12 hileras. El grano es de textura harinosa o dentada, de color blanco, con aleurona sin color y pericarpio incoloro o ahumado. El color del grano es blanco o amarillo, y ocasionalmente ahumado.

Distribución. Se encuentra en las alturas medias de Jalisco y las llanuras costeras de Nayarit, hasta Sonora y Baja California. Las colectas para este trabajo se obtuvieron en Jalisco, Michoacán y Nayarit. El rango de alturas donde se encontró esta raza varió de 77 (Nayarit) a 2000 (Michoacán) msnm. En la actualidad es una raza relativamente escasa, pero tiene presencia en razas más modernas.

Origen. Tabloncillo es un derivado de Harinoso de Ocho y Reventador. La genealogía propuesta por Wellhausen et al. (1951) para el origen de Tabloncillo incluye a Harinoso de ocho, Tabloncillo, Chapalote, Reventador y teocintle. Estos autores incluyen a Tabloncillo entre las razas mestizas prehistóricas para señalar su antigüedad; su importancia es considerable porque intervino en la formación de otras razas sobresalientes, como Jala, y especialmente Celaya, Cónico Norteño y Bolita.

Usos. Su tortilla es de mejor calidad, más suave y de mejor sabor; el grano también es adecuado para elaboración de pozole. Proporciona elotes de sabor agradable. Las hojas de la mazorca o totomoxtle se cortan para envoltura de tamales. El rastrojo molido se proporciona como alimento al ganado, que lo ingiere fácilmente por ser muy palatable; el grano ocasionalmente se usa en la engorda de cerdos.

Raza Tabloncillo Perla.

Descripción. Las características de planta de *Tabloncillo Perla* son similares a las de *Tabloncillo*. La mazorca es de tamaño mediano o largo, con ocho a diez hileras. El grano, en lugar de ser harinoso, es de textura cristalina, de color blanco.

Distribución. Su área de origen y adaptación es similar a *Tabloncillo*, aunque es más frecuente de Nayarit a Baja California, por lo general en altitudes inferiores a las de *Tabloncillo*. Las colectas obtenidas para este proyecto proceden de Nayarit.

Origen. Wellhausen et al. (1951) clasificaron a *Tabloncillo perla* como una subraza de *Tabloncillo*, aunque está más relacionada con *Harinoso de Ocho*, según definieron Sánchez et al. (2000).

Usos. Tortillas y derivados de la masa son la forma generalizada de aprovechar el grano de esta raza. El elote es de buen sabor. La hoja se aprovecha para envoltura de tamal. Es un buen forraje, molido para los animales.

Raza Tuxpeño.

Descripción. Plantas altas, de 3 a 4 metros; amacollan poco y tienen hojas abundantes; sus espigas son largas y ramificadas; la madurez es tardía. Las mazorcas son largas de 20 o más centímetros, de grosor medio, con forma cilíndrica y 12 a 16 hileras. Los granos son anchos y de longitud media, muy dentados; el endosperma es blanco, y la aleurona y pericarpio generalmente son incoloros; el grano es blanco, a veces amarillo.

Distribución. Es la raza más importante que se ha cultivado en la costa del Golfo de México, desde Yucatán hasta el Noreste, de alturas del nivel del mar hasta 500 metros. Muchas variedades cultivadas en los estados norteños Sonora, Chihuahua y Coahuila entre 100 y 500 metros de elevación, muestran presencia de *Tuxpeño*. Esta es la más importante de todas las razas de maíz, por su influencia en las modernas razas agrícolas de mayor productividad, como *Celaya*, *Chalqueño* y *Cónico Norteño*. *Tuxpeño* es fuente germoplásmica de los maíces dentados del sur de Estados Unidos. Su influencia se extiende aún a la mayor parte de los mejores híbridos de maíz sembrados en el siglo XXI en las regiones centro, occidente, noroeste y noreste de México, desde el nivel del mar hasta casi 2000 metros. Sus genes se han esparcido por muchas partes del mundo a través de las poblaciones del CIMMYT.

Origen. *Tuxpeño* es una raza derivada de *Olotillo* y *Tepecintle*. El análisis de estas tres razas muestra que *Tuxpeño* es intermedio a las otras dos en altura de planta, número de hojas, diámetro de mazorca, número de nudos cromosómicos, etcétera. En otros caracteres se aproxima a uno u otro progenitor. Las razas propuestas por Wellhausen *et al.* (1951) para explicar el origen de esta raza son *Harinoso flexible, Olotillo, Harinoso Guatemala, Tepecintle* y teocintle. Sánchez *et al.* (2000), agrupan juntos a *Tuxpeño* y sus descendientes directos *Celaya* y *Tuxpeño norteño*. En algunas de las muestras obtenidas en este trabajo se nota la influencia de *Olotillo* o de *Tabloncillo*, tanto en número de hileras como en el ancho del grano y en la longitud de la mazorca.

Usos. La mayor parte de su producción de grano se destina para hacer tortilla. Los agricultores que proporcionaron las muestras de este trabajo señalaron otras formas de consumo como elote, pozole, tamales, atole, dulce y usos pecuarios, como el ocasional corte de hoja para el ganado y el más común rastrojo molido para los animales.

2.3 El maíz como cultivo forrajero

El ensilado de maíz es un componente importante en las raciones del ganado bovino lechero, ya que es un forraje de alto rendimiento energético (Goodrich y Meuse, 1985). El ensilaje se produce por microorganismos anaeróbicos cuando se almacena, para que ocurra la fermentación y producción de ácido láctico. El forraje que se obtiene en esta forma es un apoyo fundamental para la producción de leche o carne.

Los cultivos como maíz y sorgo, alcanzan la máxima acumulación de materia seca con la madurez fisiológica del grano (Jiménez, 1979), pero la digestibilidad del forraje se reduce. La mayor cantidad de materia seca digestible por unidad de área se obtiene antes de que ocurra la madurez fisiológica del grano (Wattiaux, 1994).

El momento óptimo para ensilar maíz es cuando el grano presenta tres cuartas partes en estado masoso. En esta etapa el tallo y hojas mantienen un buen nivel del valor nutritivo; además, en el grano se almacenan cantidades importantes de almidones, en tal forma que hasta el 50% de la materia seca de la planta se encuentra en la mazorca (Wattiaux, 1994).

Los residuos del cultivo como el rastrojo de maíz, se caracterizan por tener un elevado contenido de fibra indigestible debido al contenido de lignina y su asociación con la celulosa, así como un nivel bajo de proteína cruda. Por lo general se destinan a las raciones de animales no lactantes o para becerros de engorda, que tienen requisitos de energía menores que una vaca en producción (Wattiaux, 1994). Las concentraciones de fibra aumentan al aproximarse la planta al estado de madurez fisiológica del grano (Wiersma *et al.*, 1993; Bal *et al.*, 1997).

El maíz forrajero se siembra a densidades de población altas de 80,000 plantas/ha o más. Aunque existe evidencia que las altas densidades de población pueden reducir la calidad del forraje debido principalmente al menor contenido de grano, existe una respuesta diferencial de acuerdo a los genotipos y a su índice de cosecha. Con una adecuada distribución en el terreno, en muchos de los híbridos de maíz modernos no decrece en forma notable la calidad del forraje, al cultivarlos en altas densidades, con lo que se puede incrementar el rendimiento del forraje por unidad de superficie (Tollenar, 1989).

Correa et al. (2002) mencionan que el tipo de endospermo del grano es importante en la nutrición, ya que los maíces de tipo cristalino disminuyen la actividad ruminal para la degradación del almidón, en comparación de los tipos de maíces con mayor cantidad de almidón harinoso como son los dentados. La elección de

híbridos de maíz debe basarse en la información de aspectos agronómicos y calidad nutritiva para fines forrajeros. (Núñez *et al.*, 1999).

En condiciones de humedad limitada, los maíces de ciclo intermedio-precoz tienen mayor oportunidad de producir grano en relación al follaje. Es posible obtener una mejor calidad del cultivo, porque su forraje correlaciona positivamente con otros parámetros como la digestibilidad y la proteína cruda. La constitución genética de las poblaciones nativas de maíz, que es heterogénea y heterocigótica, aporta un amortiguamiento mayor a las condiciones adversas del clima. Los híbridos de maíz son poblaciones homogéneas y heterocigóticas, desarrollados para expresar al máximo su genotipo en ambientes favorables (Dhiman *et al.*, 2002).

2.4 Estadísticas del maíz para forraje en Jalisco

En la región Occidente, el uso de maíz para forraje es una práctica muy difundida entre los agricultores y ganaderos. Solo en Jalisco se siembran más de 100,000 hectáreas para ensilaje. En forma adicional, se aprovecha la planta completa y seca del maíz, para molerla y proporcionarle alimentación al ganado de engorda. Así, el destino de aproximadamente un tercio de la superficie de maíz de Jalisco es para uso pecuario (Ron *et al.*, 2006).

CUADRO 2.1 PRODUCCIÓN DE GRANO Y FORRAJE DE MAÍZ, DE LECHE Y CARNE DE BOVINO EN JALISCO 2000-2009.

AÑO	MAÍZ FORRAJERO (ton)	MAÍZ GRANO (ton)	BOVINOS LECHE (ton)	BOVINOS CARNE (ton)
2000	1´274,009	2´158,926	1′678,175	183,556
2001	2′682,924	2′888,963	1′691,143	178,657
2002	2′166,283	3,061,055	1′719,155	180,438
2003	3′571,674	3´122,595	1′712,546	176,444
2004	2′910,354	3′351,591	1′715,201	178,485
2005	3′002,333	2′620,009	1′710,727	177,002
2006	2′825,040	3'030,253	1´697,486	179,369
2007	3′199,749	3´251,674	1′793,579	180,063
2008	4′162,877	3′205,017	1′861,333	180,292
2009	2′840,437	3′015,656	1 '863,665	185,226

Fuente SAGARPA, Delegación Jalisco; Anuarios estadísticos agrícolas y Pecuarios. 2000 a 2009.

CUADRO 2.2 PRODUCCIÓN DE GANADO BOVINO EN PIE EN JALISCO, PRECIO Y VALOR DE LA PRODUCCIÓN.

AÑO	PRODUCCIÓN (ton)	PRECIO (\$ / kg)	VALOR DE LA PRODUCCIÓN (\$)	PESO (kg)
2001	2.706.137	12.21	33.052.855	388
2002	2.746.914	12.76	35.041.264	387
2003	2.809.049	12.33	34.627.291	395
2004	2.859.667	12.37	35.373.132	398
2005	2.898.605	14.56	12.198.797	379
2006	2.900.464	16.64	48.276.096	378
2007	3.025.034	16.72	50.585.492	385
2008	3.085.076	16.79	51.812.667	387

Fuente SAGARPA, Delegación Jalisco; Anuarios estadísticos agrícolas y Pecuarios. 2000 a 2008.

2.5 Calidad del forraje en el maíz

La calidad del forraje en el maíz depende de la composición química de la planta, su estado de madurez, las condiciones durante el crecimiento y la cosecha, y de la relación tallo-hoja-mazorca. Todos estos elementos contribuyen a la nutrición y aceptación por los animales (Hutjens, 1997).

Las vacas lecheras necesitan consumir el 1.2 % de materia seca del peso de la vaca como fibra detergente neutro, necesaria para mantener un balance óptimo de carbohidratos de la pared celular y otros contenidos celulares. La fibra física del material vegetal y el tamaño de la misma, se necesita para mantener el pH en el rumen y el tiempo de rumia; si el pH en el rumen baja a 6, el crecimiento de las bacterias que digieren las fibras son afectadas cambiando los patrones de ácidos grasos volátiles. Por lo mismo, la fibra física se requiere para hacer trabajar a la vaca y proporcionarle un factor rugoso que estimule la rumia (Hutjens, 1997).

En México, los ensilados de maíz tienen un valor de energía neta de lactancia inferior a 1.5 Mcal/kg de materia seca (Núñez *et al.*, 2003). La cantidad de energía disponible de un alimento depende de la fibra detergente neutra y ácida en la materia seca del forraje y de su digestibilidad. La mayor proporción de la fibra se encuentra en tallos y hojas. La digestibilidad de hojas y tallos en maíz difiere entre genotipos con valores que van del 58.0 a 67.6% y de 26.2 a 65.0% respectivamente (Lundval *et al.* 1994). La proporción de mazorca influye en el valor energético de los ensilados de maíz y por ende en la calidad del forraje. Es necesario utilizar híbridos

de maíz que tengan al menos el 54% de mazorca y un valor menor del 50% de fibra detergente neutra; con estos niveles ideales se pueden obtener valores energéticos satisfactorios de híbridos de maíz. (Fonseca *et al.*, 2000; Núñez *et al.*, 2003).

En las evaluaciones de maíces para grano, existen rangos de digestibilidad de materia seca que van del 54 al 86 %, del 7 al 11 % de proteína cruda, del 23 al 43% de fibra detergente ácido, del 40 al 68 % de fibra detergente neutra y una producción de materia seca de 27 ton/ha (Laurer *et al.*, 2001). La alta producción de grano no siempre esta correlacionada con la calidad de forraje, y tampoco existe una correlación completa entre el rendimiento de materia seca y el valor energético; es necesario elegir los híbridos por los dos criterios (Wiersma, *et al.*, 1993; Núñez, 1999; Laurer *et al.*, 2001).

Los híbridos que son más productivos en la relación grano-forraje, con frecuencia son tardíos, tienen un mayor contenido de fibras y menor digestibilidad; los genotipos precoces tienen una mayor flexibilidad para producir materia seca de calidad y por lo tanto pueden contribuir a una mejor de la producción de leche (Arguillier, et al., 2000; Peña et al., 2002). Una mejor productividad del maíz forrajero sin disminuir su calidad, contribuye a eficientar la producción de leche, para reducir los costos de producción (Tetio-Kagho y Gardner, 1988; Jollife et al., 1990).

En el Cuadro 2.3 se muestran los rangos de componentes de calidad en híbridos para ensilaje evaluados en nueve entidades federativas de México. Puede observarse que el contenido de materia seca en ensilados de maíz varía del 25 al 68%; la proteína cruda del 6.5 al 9.1; la fibra detergente ácido oscila entre 20.2 y 39.7; mientras la fibra detergente neutro lo hace con valores de 36.1 a 62.6%; la lignina presenta niveles del 1.6 al 4.8% y la energía neta de lactancia de 1.2 a 1.6 Mcal/kg de MS.

CUADRO 2.3 COMPONENTES DE CALIDAD DE HÍBRIDOS PARA ENSILAJE, EN DIFERENTES REGIONES GANADERAS DE MÉXICO.

ESTADO	MS	PC	FDA	FDN	LIG	ENL
LOTADO	%	%	%	%	%	Mcal/kg MS
COAHUILA						_
(Herrera <i>et al.</i> , 1997; Báez <i>et al.</i> , 1999, 2000)	31.4- 39.3	6.5 - 8.8	27.6 - 37.2	52.7 - 62.6	-	1.2 - 1.4
CHIHUAHUA (Báez <i>et al.</i> , 1999)	31.6 -39.2	6.5 - 8.8	27.6 - 39.7	52.7 - 62.6	-	1.2 - 1.4
GUANAJUATO (Báez <i>et al.</i> , 1999, 2000 y 2001)	24.5 - 37.1	7.0 - 9.8	24.6 - 33.3	40.4 - 51.8	1.6 - 2.3	1.4 - 1.6
HIDALGO (Báez et al., 2001)	24.5 - 30.4	_		_	_	-
Jalisco (Báez <i>et al.</i> , 1999, 2001) MÉXICO (Báez <i>et</i>	28.3 - 47.0		35.0 - 20.2	55.6 - 36.1	2.4 - 4.8	1.3 - 1.6
<i>al.</i> , 1999, 2000 y 2001)	25.4 - 35.8	7.7 - 8.7		44.4 - 41.5	-	1.3 -1.6
QUERÉTARO (Báez <i>et al.</i> , 1999, 2000 y 2001)	24.9 - 35.3	6.3 - 9.1	26.7 - 38.8	40.6 - 57.1		1.2 -1.6
DURANGO (Faz et al., 2000)	56.6 - 68.1	_		63.3 - 53.1	-	1.3 -1-6

2.5.1 Componentes de la calidad del maíz forrajero.

2.5.1.1 Contenido y digestibilidad de la materia seca.

La materia seca es el total de compuestos que la planta acumula en función de su metabolismo específico. Incluye carbohidratos, proteínas, lípidos, vitaminas, minerales, etc. La determinación de la materia seca se realiza en los forrajes que tienen un contenido de agua muy variable. Algunas plantas contienen grandes cantidades de aceites esenciales, terpenos y otras sustancias volátiles que pueden perderse durante la desecación (Pond y Church, 2003).

Los procedimientos de digestibilidad *in vitro* involucran la incubación en laboratorio de muestras de forrajes con líquido ruminal. Los componentes básicos de las técnicas *in vitro* son el sustrato o forraje, la saliva artificial o una solución buffer de minerales y el inoculo ruminal. La técnica empleada por Tilley y Terry (1963) propone una incubación con líquido ruminal durante 48 horas para digerir la fibra y una segunda etapa de digestión con toxina ácida para reproducir la degradación de

las proteínas del alimento y bacterianas por las enzimas digestivas del abomaso de los rumiantes.

2.5.1.2 Carbohidratos estructurales.

Los carbohidratos son compuestos químicos neutros que contienen los elementos carbono, oxigeno y nitrógeno. Los carbohidratos representan entre el 50 y 80 % de la materia seca del forraje y de los granos.

Los polisacáridos estructurales son la celulosa y hemicelulosa, carbohidratos que pueden asociarse con la lignina. Estas son las fibras de la pared celular que aportan fuerza a la estructura de la planta. La celulosa es el carbohidrato más abundante en la naturaleza. La población microbiana del rumen tiene las enzimas necesarias para extraer glucosa de la celulosa y de la hemicelulosa. Por otra parte, la lignina no es un carbohidrato.

A medida en que madura la planta, el contenido de lignina aumenta y sus moléculas forman compuestos con los carbohidratos, que impiden el acceso de las bacterias a la celulosa y hemicelulosa; el resultado es que la celulosa y la hemicelulosa de las paredes celulares resultan casi indigestibles en el rumen. El valor nutritivo de un forraje es más alto en la etapa vegetativa y más bajo cuando el grano madura. A medida que la planta forrajera forma el grano, aumenta el contenido de fibra y lignina, lo que hace al forraje maduro menos digestible (Wattiaux, 1994).

La fibra es el principal componente de los tallos de gramíneas y leguminosas. El porcentaje de fibras de un forraje se puede medir con pruebas de laboratorio. Las estimaciones de las fibras en los análisis de alimentos son la fibra cruda, la fibra detergente acido y la fibra detergente neutro. La muestra de forraje se trata con una solución de sulfato de lauril sódico en amortiguadores de pH neutro; al residuo se le nombra fibra detergente neutro (FDN) o paredes celulares (Van Soest y Wine, 1968).

El procedimiento neutro detergente determina los componentes de la pared celular presentes en alimentos vegetales fibrosos. La fibra detergente neutro mide la mayor parte de los componentes estructurales de las células vegetales, como celulosa, hemicelulosa y lignina. Separa la materia seca en constituyentes nutricionales solubles y accesibles de los que no son totalmente aprovechables, o que dependen de la fermentación microbiológica para su aprovechamiento (Tejada, 1985). Esta técnica es la que hace una mejor separación de los carbohidratos estructurales de los no estructurales. FDN es también la mejor expresión de la fibra disponible para el rumiante (National Research Council, 2001).

La fibra detergente neutro no es fisiológica, pero en forma experimental se ha demostrado que corresponde bien con lo que se define como fibra en la dieta (Tejada, 1985). La celulosa y otros carbohidratos fibrosos como la hemicelulosa que provienen de los forrajes, son necesarios en la dieta para mantener la función normal del rumen (Wattiaux, 1994; National Research Council, 2001). Los factores que determinan la calidad del ensilado son la proporción de grano existente, la condición de las fibras, el contenido de materia seca, la digestibilidad y la técnica utilizada al ensilar (Goodrich y Meuse, 1985).

El aumento de fibra en el forraje de maíz se atribuye a la presencia de lignina en hojas y tallos conforme la planta llega a la madurez. La humedad en el suelo disponible para la planta puede influir en el grado de digestibilidad. La cantidad de fibra presente en el forraje está relacionada negativamente con la digestibilidad, así, la fibra detergente ácida (FDA) tiende aumentar conforme la humedad del suelo se restringe. (Núñez et al., 1999). La fibra detergente ácido consiste en celulosa, lignina, cutina y cenizas ácido insolubles. La determinación de la fibra detergente ácido determina el complejo ligno-celulósico y el silicio. La diferencia entre las paredes celulares FDN y la fibra detergente ácido (FDA) es una estimación de la hemicelulosa (Van Soest y Wine, 1968). Los suministros no forrajeras de (FDN) son hasta 50% menos efectivas que los forrajes para mantener un alto contenido de grasa en la leche (Allen, 1997; Firkins, 1977; Mertens, 1997).

2.5.1.3 Carbohidratos solubles.

Los carbohidratos no estructurales o solubles se encuentran en el interior de las células vegetales; por lo general son más digestibles que los carbohidratos presentes en la pared celular. La fracción de los carbohidratos no estructurales son azúcares, almidones, ácidos orgánicos y otros carbohidratos de reserva como los fructanos, y son una fuente mayor de energía para el ganado de leche (National Research Council, 2001).

El almidón y otros carbohidratos que no son parte de la pared celular, se digieren más rápido y proporcionan más energía que los carbohidratos fibrosos. La eficiencia de una dieta a base de forrajes de baja calidad, se mejora con la adición de una pequeña cantidad de grano. En el tracto digestivo del rumiante, el almidón y otros polisacáridos se hidrolizan en azúcares sencillos como fructosa, glucosa, etc. Los carbohidratos son la mayor fuente de energía en las dietas del ganado lechero, y con frecuencia representan entre el 60 y 70% del total de la ración (Wattiaux, 1994).

En el ensilado de maíz, en los granos y en la mayoría de los productos de sobrepaso, nutrientes que no se retienen en el aparato digestivo de las vacas, son una fuente de energía usada para cubrir los requerimientos nutricionales y para producir ganancia de peso o sintetizar la leche. Entre el 50 y 100% de los carbohidratos no estructurales son almidones. La degradabilidad de los almidones de diferentes granos es así: avena>trigo>cebada>maíz>sorgo. La digestibilidad ruminal del almidón es mayor en el maíz con alto contenido de humedad que en el maíz seco. (Wattiaux, 1994; National Research Council, 2001).

2.5.2 Valor energético del forraje de maíz

2.5.2.1 La estimación de la energía de los forrajes.

Una caloría es la cantidad de energía necesaria para aumentar la temperatura de un gramo de agua de 14.5°C a 15.5°C. Una kilocaloría (Kcal) es equivalente a 1000 calorías (Wattiaux, 1994).

El valor energético de un alimento en términos de calorías, se expresa como la habilidad para producir calor cuando este es quemado. Es común utilizar el concepto energía neta de lactancia (ENL) como un parámetro para estimar el valor y la energía de un alimento utilizado para el mantenimiento y la producción de leche en bovinos (National Research Council, 2001).

Los requerimientos para el mantenimiento y producción de leche se expresan como energía neta de lactancia. La energía metabolizable tiene una eficiencia similar que la de mantenimiento (0.62) y producción de leche (0.64), (Moe y Tyrrell, 1972).

Los valores de ENL en alimentos, que se expresan como megacalorías por kilogramo de materia seca (Mcal/kg MS), se usan para expresar necesidades en vacas adultas de mantenimiento, preñez, producción de leche y modificaciones en las reservas corporales que no sean crecimiento. El total de nutrientes digestibles (TND) de un alimento o forraje debe determinarse en forma experimental. A partir del valor TND pueden calcularse las concentraciones de energía digestible (ED), energía metabolizable (EM) y energía neta de lactancia (ENL), como se indica a continuación:

Energía digestible (Mcal/kg) = 0.04409 x %TND

Energía metabolizable (Mcal/kg) = 1.01 x ED - 0.45

Energía neta de lactancia (Mcal/kg) = 0.0245 x %TND - 0.12

No obstante, la anterior aproximación presenta algunas limitaciones:

- Los valores de TND obtenidos por experimentación y que están disponibles en tablas se obtuvieron hace décadas, por lo que dichos valores pueden no corresponder al de alimentos o forrajes del presente.
- Un valor de TND publicado solo es apropiado cuando la composición nutrimental de un alimento es similar a la que se usó en el ensayo de digestibilidad original.
- Las ecuaciones para convertir TND en EM o ENL se obtuvieron para raciones completas, por lo que el TND de muchos forrajes esta fuera del rango de los valores usados para generar las ecuaciones. (National Research Council, 2001).
- La energía requerida para la lactancia es definida como la energía contenida en la leche producida, y la concentración de ENL en la leche es la suma del calor de combustión de los componentes individuales del fluido, como son la grasa, proteína y lactosa.

Los valores de cada componente se miden individualmente para sustituir en las ecuaciones:

ENL (Mcal/kg) = $(0.0929 \times \% \text{ grasa} + 0.0547)$ (% proteína cruda +0.0395 + % lactosa)

Si solo se cuantifica la proteína y la grasa de la leche y se supone a la lactosa constante en 4.85%, la ENL de la leche se calcula así:

ENL (Mcal/kg) = 0.0929 x % grasa + 0.0547 x % proteína cruda +0.192 (National Research Council, 2001).

La estimación de la energía neta de ganancia de peso (ENG) puede realizarse con la ecuación

ENG = TND x 0.1318 - 0.459, donde TND = DIV (Pioneer Hi-Bred International, 1990).

III. MATERIALES Y METODOS

3.1 <u>Características agroclimáticas de la región de Zapopan</u>

3.1.1 Localización y ubicación

El Centro Universitario de Ciencias Biológicas y Agropecuarias se localiza en el municipio de Zapopan, en la región Centro del estado de Jalisco Las coordenadas extremas de Zapopan son 20°25'30" a 20°57'00" de latitud norte y 103°19'30" a 103°39'20" de longitud oeste, a una altura promedio de 1,548 metros sobre el nivel del mar.

3.1.2 Clima, temperatura y precipitación

El clima es templado-semicálido en la parte oriente y poniente. En la parte norte y sur, es semiseco-semicálido, pero en la parte sur no tiene estación invernal definida, y en la parte norte hay invierno benigno. La temperatura media anual es de 22°C, con máxima de 36.1°C y mínima de 11°C. El régimen de lluvias se registra en los meses de junio a octubre, con una precipitación media anual de 906.1 milímetros. El promedio anual de días con heladas es de 5.12. Los vientos dominantes son en dirección del este al oeste.

En el Cuadro 3.1 se observa la temperatura mínima, máxima, media y la precipitación del municipio de Zapopan de los años 2003-2005.

CUADRO 3.1 TEMPERATURA Y PRECIPITACIÓN DE ZAPOPAN 2003, 2004, 2005.

	2003				2004				2005			
MES	TEMP	ERATU	RA(°C)	PP	TEMP	ERATU	RA(°C)	PP	TEM	PERATU	RA(°C)	PP
	MIN	MAX	MED	(mm)	MIN	MAX	MED	(mm)	MIN	MAX	MED	(mm)
ENE	3.0	27.6	27.4	2	1.5	26.5	14.5	36.8	4.0	29.7	15.5	1.8
FEB	3.5	31.2	17.7	0	0.0	29.5	15.6	Inap.	4.5	30.5	17.1	17.2
MAR	-0.2	34.2	19.0	0	5.0	34.2	19.9	4.2	4.0	34.5	18.3	1.6
ABR	8.5	35.4	22.7	0	6.8	36.3	21.5	0	7.4	37.5	23.0	0
MAY	12.4	37.5	24.9	9.4	11.5	36.0	23.1	104.5	9.6	36.5	17.7	15
JUN	14.4	34.0	21.0	294.8	14.0	32.2	20.7	423.7	11.8	37.5	24.4	72.4
JUL	13.0	30.8	20.7	332.6	14.3	30.8	20.7	127.9	15.0	31.7	21.8	364.8
AGO	13.5	30.0	20.7	150.5	13.7	31.5	20.8	326.4	13.5	30.5	20.8	198.9
SEP	14.5	30.4	20.5	294.4	14.5	30.3	20.1	344.2	13.5	30.5	21.3	114.7
OCT	6.4	29.7	19.5	44	10.5	30.5	20.4	14.6	9.0	30.9	20.2	80.6
NOV	6.2	29.7	18.0	25.2	4.0	31.0	16.8	0	5.2	30.7	17.7	2.2
DIC	-0.8	28.3	13.4	0	1.8	28.4	16.4	7.1	2.6	29.5	15.4	0
ANUAL				1152.9				1389.4				859.2

Fuente: Registro de precipitación del Observatorio Meteorológico, periodo 1960-2005.

3.1.3 <u>Suelo</u>

El municipio tiene una superficie territorial de 89,315 hectáreas, de las cuales 43,269 son agrícolas; se utilizan 23,730 para la actividad pecuaria; de uso forestal son 11,400; los suelos urbanos son 3,910 y 7,006 hectáreas tienen otros usos.

En la composición de los suelos predominan los tipos Regosol, Feozem y Litosol, así como pequeñas porciones de Luvisol.

En el Cuadro 3.2 se anotan algunas características de los suelos del CUCBA. Las partículas del suelo se clasifican como arena, limo y arcilla. Las partículas de arena tienen diámetros entre 2 y 0.05 mm, las de limo entre 0.05 y 0.002 mm, y las de arcilla son menores de 0.002 mm. En general, las partículas de arena pueden verse con facilidad y son rugosas al tacto. Las partículas de limo apenas se ven sin la ayuda de un microscopio y parecen harina cuando se tocan. Las partículas de

arcilla son invisibles si no se utilizan instrumentos y forman una masa viscosa cuando se mojan.

CUADRO 3.2 CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL SUELO DEL CUCBA.

	Arena	59.36 %			
Tarduna	Limo	14.64 %			
Textura	Arcilla	26.00 %			
Materia Orgánica	1.178%				
0.41	Ca	1.2266 meq/100g			
Cationes Intercambiables	Mg	0.69 meq/100g			
morambiables	Na	0.954 meq/100g			
рН	5.29				
	N nítrico	15 ppm			
	N amoniacal	12 ppm			
Morgan	Р	12 ppm			
	K	180 ppm			

En función de las proporciones de arena, limo y arcilla, la textura de los suelos se clasifica en varios grupos definidos de manera arbitraria. Algunos son: la arcilla arenosa, la arcilla limosa, el limo arcilloso, el limo arcilloso arenoso, el fango arcilloso, el fango, el limo arenoso y la arena limosa. La textura de un suelo afecta en gran medida a su productividad. Los suelos con un porcentaje elevado de arena suelen ser incapaces de almacenar agua suficiente como para permitir el buen crecimiento de las plantas y pierden grandes cantidades de minerales nutrientes por lixiviación hacia el subsuelo.

Los suelos que contienen una proporción mayor de partículas pequeñas, por ejemplo las arcillas y los limos, son depósitos excelentes de agua y encierran minerales que pueden ser utilizados con facilidad. Sin embargo, los suelos muy arcillosos tienden a contener un exceso de agua y tienen una textura viscosa que los hace resistentes al cultivo y que impide, con frecuencia, una aireación suficiente para el crecimiento normal de las plantas, por lo tanto el resultado del análisis físico del suelo del Centro Universitario de Ciencias Biológicas y Agropecuarias es arenoso.

La materia orgánica del suelo constituye solo una pequeña parte de la fase sólida, y a la vez desempeña una gran función en la representación de los componentes que representa el 5% en volumen y el 2 % en peso del suelo. En el cuadro 3.2, está el contenido de materia orgánica en el suelo del CUCBA, que se considera bajo.

El pH en el suelo se mide de ácido a alcalino con un rango de 2 a 12. El pH neutro es igual a 7. El pH ácido se mide de 2 a 6.9 y el pH alcalino se mide de 7.1 a 12. Por lo tanto el pH del suelo del CUCBA es ácido.

Los cationes intercambiables permiten determinar la capacidad que tiene un suelo para retener y liberar <u>iones</u> positivos. Un peso equivalente es igual al peso atómico dividido entre la valencia. En este suelo el calcio y magnesio tienen un nivel de medio a bajo; el sodio se encuentra a un nivel que permite el desarrollo normal del cultivo.

La técnica de Morgan indica que el nitrógeno nítrico tiene un porcentaje del 15 ppm; el nitrógeno amoniacal tiene 12 ppm; niveles que se consideran bajos; en el fósforo contamos con una concentración del 12 ppm que se considera bajo y el potasio tiene una concentración adecuada para la nutrición de la planta.

3.1.4 Vegetación y fauna

La vegetación del municipio de Zapopan se compone de pino (*Pinus* sp.) y encino (*Quercus* sp.), ambos géneros se encuentran en los bosques de <u>La Primavera</u>, El Nixticuil y El Centinela, además de otras especies como cretón (*Coleus blumei*), jonote (*Heliocarpus appendiculatus*), madroño (*Arbutus unedo*), ozote (*Ipomea murucoides*), retama (*Sphaerocarpa* sp.), sábila (*Aloe* sp.) y nopal (*Opuntia* sp.) en la parte norte y al oriente de la barranca. El municipio cuenta con 11,400 hectáreas de bosque donde además de las mencionadas especies vegetales, se puede encontrar especies de roble (*Quercus* sp.), oyamel (*Abies religiosa*) y tepame (*Acacia schaffneri*), principalmente.

3.1.5 Materiales genéticos

CUADRO 3.3. GRUPOS RACIALES Y PROCEDENCIA DE LAS COLECTAS DE MAÍZ DE JALISCO, MICHOACÁN Y NAYARIT.

GRUPO RACIAL	Jalisco	Michoacán	Nayarit	TOTAL
Ancho	3			3
Bofo	2		2	4
Celaya	3	1		4
Dulce		1		1
Elotes occidentales	3	1	2	6
Elotero Sinaloa	2		3	5
Jala			4	4
Mushito		36		36
Pepitilla	1			1
Tabloncillo	16	1	8	25
Tabloncillo perla	2		7	9
Tuxpeño	3		9	12
Elotes cónicos		2		2
Onaveño			3	3
Generaciones avanzadas	4			4
TOTAL	39	42	38	119

En el Cuadro 3.3 están incluidas 14 razas y las generaciones avanzadas de maíz que proceden de Jalisco, Michoacán y Nayarit, con un total de 119 colectas. Se incluyó entre los materiales un híbrido amarillo del Programa de Maíz del IMAREFI como punto de referencia.

3.1.6 Metodología experimental

Se obtuvieron muestras de las colectas de maíz, en siembras en el campo experimental del CUCBA; se analizaron en el Laboratorio de Nutrición Animal del Departamento de Producción Animal del CUCBA. En el laboratorio, las muestras se procesaron de acuerdo a los procedimientos que se indican en el Cuadro 3.4.

CUADRO 3.4. MÉTODOS DE ANÁLISIS UTILIZADOS PARA EVALUAR LAS VARIABLES.

VARIABLE	MÉTODO	REFERENCIA
Energía neta de ganancia de peso	Ecuación	Pioneer Hi-Bred Int.
		(1990)
Materia seca	Secado y diferencia	Hernández <i>et al</i> . (2008)
	peso	
Proteína cruda	Kjeldahl	Hernández et al. (2008)
Fibra detergente neutro	Fracción de fibra	Van Soest y Wine(1968)
Fibra detergente ácido	Fracción de fibra	Van Soest y Wine(1968)
Lignina detergente neutro	Fracción de fibra	Van Soest y Wine(1968)
Digestibilidad in vitro de la materia	Digestión de forrajes	Tilley y Terry (1963)
seca		

Las metodologías completas se describen a continuación:

3.1.6.1 Determinación de humedad y materia seca (MS).

- La materia seca de las plantas recién cortadas, se obtuvo al secar la muestra en una estufa con circulación forzada de aire a 60°C hasta peso constante, para eliminar el contenido de agua. Su valor es importante para que las determinaciones se expresen en base seca.
- Se dejó secar una caja de aluminio a 105°C en la estufa durante una hora y pasar a la campana de desecación para obtener un peso constante de la caja.
- Para obtener la materia seca de trabajo, se pesó la caja de aluminio y se agregaron cinco gramos de muestra para analizar, se pasó al horno o estufa a una temperatura de 100°C durante 18 horas.
- Se pasó la caja de aluminio + residuo a la campana de desecación 20 minutos.
- Se pesó la caja + el residuo (Arlington, 1990.).

3.1.6.2 Determinación de la proteína cruda (PC).

Este procedimiento se utiliza para determinar la cantidad de proteína cruda; se conoce como el método de Kjeldahl. El material que se va analizar primero se digiere en H₂SO₄ concentrado, ácido que convierte el nitrógeno en (NH₄)₂SO₄; después se enfría esta mezcla, se diluye con agua y se neutraliza con NaOH, el

cual trasforma el N en una forma de amoniaco ionizado. Después se destila la muestra y el destilado que contiene el amoniaco se titula con acido.

Procedimiento.

Digestión.

- Pesar un gramo de muestra y pasar al matraz Kjedahl de 800 ml.
- Añadir los catalizadores sulfato de potasio o sulfato de sodio 10 g, 0.5 g de sulfato de cobre.
- Añadir 30 ml de acido sulfúrico concentrado.
- Calentar en el digestor, primeramente a una temperatura moderada hasta que la formación de espuma cese y después a que permanezca en ebullición hasta que la solución clarifique dejando de 15 a 20 minutos después de que toma el color verde azulado.

Destilación.

- Colocar 50 ml de acido bórico al 4% en un matraz Erlenmeyer de boca ancha de 500 ml.
- Añadir 3 gotas de indicador para proteína.
- Colocar el matraz Erlenmeyer en la parte baja del destilador y asegurarse de que la punta del condensador se encuentre bajo la superficie del líquido del Erlenmeyer.
- Dejar enfriar por lo menos media hora y agregar 200 a 300 ml de agua destilada. Añadir al matraz Kjeldahl de 800 ml, 5-8 granallas de zinc y de 4-5 vidrios.
- Sosteniendo el matraz Kjeldahl en posición inclinada añadir 100 ml de hidróxido de sodio al 33 % resbalando por las paredes y se forma en 2 capas.
- Conectar inmediatamente al destilador. Mezclar el contenido de matraz Kjeldahl mediante agitación rotatoria y calentar hasta que todo NH₃ allá sido destilado (150 ml de destilado son generalmente suficientes).
- Bajar el matraz Ernelmeyer de manera que el extremo del condensador quede fuera del condensador de acido bórico y apagar el sistema de calentamiento. Enjuagar con agua destilada la punta del condensador.
- Hacer una prueba en blanco con todos los reactivos y el papel pero sin muestra por lo menos una vez al día y cuando se cambian reactivos.

Titulación.

Titular con la solución 0.1 N de acido clorhídrico o sulfúrico el contenido del matraz Erlenmeyer hasta el cambio de color del indicador. Substraer de esta cifra el volumen de acido estándar necesario para neutralizar el NH₃ producido por una

determinación en "blanco", en la cual se usan todos los reactivos en igual cantidad y como muestra una hoja del mismo papel filtro.

Nota : La cantidad de H₂ SO₄ necesaria para obtener una digestión completa de la muestra es variable y depende de la composición de la misma, un gramo de grasa consume 12 ml y gramo de carbohidratos 6 ml de H₂ SO₄ durante la digestión.

3.1.6.3 Determinación fibra detergente neutro (FDN).

- Registrar la muestra, los pesos y los cálculos en el formato de fibra ácido detergente.
- Pesar una bolsa de papel filtro, en una balanza analítica, registrar el peso de la bolsa vacía y tarar, agregar adentro de la bolsa 0.5 g de muestra previamente desgrasada y registrar el peso de la muestra.
- Sellar la bolsa 0.5 cm de la orilla con el sellador ANKOM; distribuir la muestra uniformemente con movimiento de zig zag.
- Colocar las muestras en el suspensor de bolsas 3 bolsas por canasta e introducir el suspensor dentro de la cámara, colocando la pesa sobre la última canasta para mantener sumergido el suspensor.
- Agregar 2000 ml de solución ácido detergente, activar el cronómetro por 70 minutos, prender agitación y calor, después de confirmar que el suspensor de bolsas esta agitándose (sube y baja).
- Sellar la tapadera del digestor, la temperatura se controla automáticamente.
 Nota: menos bolsas se pueden utilizar por ensayo, pero se requiere un mínimo de 1500 ml de solución en la cámara de digestión y usar todas las canastas para no dañar el equipo, el equipo tiene capacidad total para 24 muestras.
- Trascurrido el tiempo el cronometro sonará, apagar la agitación y el calor, abrir la válvula de escape y drenar la cámara de digestión antes de abrir la tapadera.
- Agregar 2000 ml de agua destilada caliente a temperatura entre 90 y 100°C; agregar cuatro ml de amilasa, encender agitador; hacer un cuarto lavado con 2000 ml de agua destilada fría.
- Retirar el suspensor, retirar las bolsas y exprimirlas con suavidad.

3.1.6.4 Determinación fibra detergente ácido (FDA).

 Registrar la muestra, los pesos y los cálculos en el formato de fibra acida detergente.

- Pesar una bolsa de papel filtro, en una balanza analítica, registrar el peso de la bolsa vacía y tarar, agregar adentro de la bolsa 0.5 g de muestra previamente desgrasada y registrar el peso de la muestra.
- Sellar la bolsa 0.5 cm de la orilla con el sellador ANKOM; distribuir la muestra uniformemente con movimiento de zig zag.
- Colocar las muestras en el suspensor de bolsas; 3 bolsas por canasta e introducir el suspensor dentro de la cámara, colocando la pesa sobre la última canasta para mantener sumergido el suspensor.
- Agregar 2000 ml de solución ácido detergente, activar el cronómetro por 70 minutos, prender agitación y calor, después de confirmar que el suspensor de bolsas esta agitándose (sube y baja).
- Sellar la tapadera del digestor, la temperatura se controla automáticamente.
 Nota: menos bolsas se pueden utilizar por ensayo, pero se requiere un mínimo de 1500 ml de solución en la cámara de digestión y usar todas las canastas para no dañar el equipo, el equipo tiene capacidad total para 24 muestras.
- Trascurrido el tiempo el cronómetro sonará, apagar la agitación y el calor, abrir la válvula de escape y drenar la cámara de digestión antes de abrir la tapadera
- Después de que la solución haya sido drenada, cerrar la válvula de escape y abrir la tapadera, agregar 2000 ml de agua destilada caliente (90 a 100°C) y prender la agitación, dejar el botón de calor apagado, sin cerrar la tapa enjuagar las bolsas por 3 minutos. Repetir el paso por 2 veces más (total 3 veces), drenando el agua en cada enjuague.
- Retirar el suspensor y sacar las bolsas exprimidas suavemente.

3.1.6.5 Determinación de Lignina (LIG).

- La Lignina se obtiene de las bolsas secas de la determinación de Fibra Detergente Acido Primeramente se colocan las bolsas secas en un vaso de precipitado de 3 litros. Agregue aproximadamente 250 ml de acido sulfúrico al 72% hasta cubrir las bolsas.
- Es muy importante que las bolsas se encuentren completamente secas a temperatura ambiente antes de agregar el acido sulfúrico al 72%. Si las bolsas están húmedas, el calor generado en la reacción que ocurre al contacto del acido con el agua, puede afectar los resultados.
- Colocar un vaso de precipitado de 2 litros, dentro del vaso de 3 litros que contienen las bolsas, manteniendo las bolsas sumergidas.
- Agitar las bolsas cada 30 minutos esto se realiza empujando el vaso de precipitado de 2 litros hacia arriba y hacia abajo aproximadamente 30 veces.

- Después de 3 horas retire el acido de las bolsas y enjuagar con agua caliente (90-100°C), repita el enjuague hasta que el PH este neutro (medir el PH con tiras reactivas indicadoras).
- Enjuague con 250 ml de acetona por 3 minutos para remover el agua, deje que la acetona se evapore totalmente.
- Secar por completo las bolsas en horno por 4 horas a 105°C posteriormente pase las bolsas a un desecador a enfriar a temperatura ambiente.
- Pesar las bolsas mas crisol en balanza
- Incinerar a 550°C por 1Hora en Mufla, después de este tiempo pasar el crisol a un desecador para enfriar
- Pesar el crisol más residuo en una balanza analítica y anotar el peso para determinar
- Calcular el % de Lignina Acido Detergente de acuerdo con la siguiente formula % Lignina Acido Detergente = F – E –C (ADF) X 100/B(ADF)
- Donde:
- F= Crisol + (Z) Calcinada
- E= Crisol + (Z) Seco
- C (ADF) = Bolsa x 0.992
- B (ADF) = gr. De muestra
- Z= bolsa mas residuo proveniente de la determinación de ADF

3.1.6.6 Determinación de digestibilidad in vitro (DIV).

Preparación de las bolsas filtrantes y de la muestra.

- Pre aclare las bolsas de filtro F57 en acetona por tres a cinco minutos y se secan al aire totalmente.
- La aclaración de la acetona quita un sulfato que inhibe
- la digestión microbiana. Se pesa cada bolsa de filtro y se registra el peso (W1) ponga a cero el equilibrio y pese 1.25 g de la muestra (W 2) directamente de la bolsa.
- Cuando se hacen estudios de 48 horas un tamaño de muestra de 0.5 g es aceptable. Se sella el bolso y se coloca en el tarro del digestor de la incubadora DAISY y se pueden colocar hasta 25 muestras por tarro; las muestras se deben distribuir uniformemente en ambos lados del divisor del tarro digestor. Se incluye por lo menos un bolso en blanco sellado para el factor de la corrección (C 1).

Preparación de la solución tapón combinada para cada tarro de digestor.

- Precalentar en 39°C ambas soluciones tapón (AYB) en envase separado agregue 266 ml de la solución B a 1330 ml de la solución A (cociente de 1.5) la cantidad exacta de AyB se debe ajustar para obtener un pH final de 6.8 en 39°C no hay otro ajuste del pH necesario. Agregue 1600 ml de mezcla combinada de A/B a cada tarro digestor.
- Ponga los tarros digestores con las muestras y la solución tapón en la incubadora de la margarita II y gire los interruptores del calor y de la agitación. Permita que la temperatura de los tarros de la digestión por lo menos veinte a treinta minutos.

Preparación de la solución y de la incubación.

- Mantener toda la cristalería a 39°C.
- Precalentar dos termos de 2 litros llenándolos con agua a 39°C. Vacíe el agua caliente justo antes de la recolección del inoculo de rumen. Utilizando el método apropiado de la recolección, retire al menos 2000 ml de inoculo de rumen y colóquelos en los términos incluya aproximadamente dos "primeros llenados" de enmaraña fibrosa del rumen con su colección en uno de los términos.
- Vaciar el inoculo de rumen de los termos a una licuadora. Purgar el contenido de la licuadora con gas CO₂ y licue la velocidad alta por 30 segundos.
- La acción de licuar sirve para desalojar los microbios que están adheridos a la enmaraña y asegurar una población microbiana representativa para la fermentación In Vitro filtre la digestión licuada a través de cuatro capas de estopilla a un frasco de 5 litros (pre caliente a 39°C). Filtre el fluido de rumen restante en los otros termos a través de cuatro capas frescas de estopilla al mismo frasco de 5 litros.
- Permitir estopilla extra alrededor de las orillas para facilitar exprimir los contenidos de la enmaraña filtrada. El frasco debe de ser purgado con CO₂ continuamente durante la transferencia del inoculo.
- Retire una de las jarras digestoras de la incubadora DAISY y agregue los 400 ml del inoculo a la solución buffer y las muestras. Purgue la jarra de digestión con gas CO₂ por treinta segundos y asegure la tapa.
- Repetir el procedimiento para todas las jarras de digestión usadas.
- Nota no permitir que el gas CO₂ burbujee a través del inoculo con buffer, sino use el CO₂ para formar una cubierta gaseosa sobre los contenidos de las jarras.
- Incubar por 48 horas la incubadora DAISY mantendrá una temperatura de 39.5°C + / - si la temperatura de las jarras varia mayor a un grado

- mueva la incubadora a una localización más caliente o coloque una cobija o aislante similar sobre la incubadora.
- Al completar la incubación, retire las jarras y drene el fluido. Escurra las bolsas completamente con agua fría hasta que el agua este clara. Use un mínimo de agitación mecánica. Al determinar Digestibilidad verdadera es necesario remover los desechos microbianos y cualesquiera fracciones solubles restantes utilizando la solución neutro detergente. Después del enjuagado de las bolsas en el agua colóquelas en el analizador de fibra ANKOM y siga el procedimiento para la determinación de NDF registre el peso post in vitro NDF como W₃.

Nota: las bolsas pueden ser guardadas en el refrigerador o congelador hasta que las determinaciones de NDF se puedan realizar.

Cálculos % IVTD = 100 ($W_3 - C_1$) / $W_2 \times 100$.

3.1.6.7 Estimación de la energía neta de ganancia de peso.

- Se realizó con la ecuación ENG = (TNDx0.01318)-0459, donde TND = DIV.
- Para obtener el valor de energía neta de ganancia de peso en megacalorías por kilogramo de materia seca se realizó la conversión ENG = (ENGMcal/lb x 1000)/454.

3.1.7 Diseño experimental

Los datos obtenidos de las muestras de forraje de maíz analizadas en el laboratorio, se procesaron de acuerdo al diseño bloques completos al azar. El modelo estadístico del diseño bloques al azar es el siguiente:

$$Y_{ii} = \mu + \tau_i + \beta_i + \epsilon_{ii}$$

donde:

 Y_{ij} es la variable analizada μ es la media τ_i es el efecto de los tratamientos β_j es el efecto de bloques ϵ_{ii} es el error experimental El Cuadro de análisis de varianza (ANVA) del diseño bloques al azar es el siguiente:

FUENTE DE	GRADOS	SUMA	CUADRADO	F
VARIACION	LIBERTAD	CUADRADOS	MEDIO	CALCULADA
Tratamientos	tra - 1	$\{((\Sigma Tr1)^2+(\Sigma Tr2)^2++(\Sigma Trn)^2)/rep\}$ -FC	SCtra/GLtra	CMtra/CMerr
Repeticiones	rep - 1	$ \{((\Sigma \text{rep1})^2 + (\Sigma \text{rep2})^2 + + (\Sigma \text{repn})^2)/\text{tra}\} $ $- FC $	SCrep/GLrep	CMrep/CMerr
Error	(tra-1)(rep- 1)	SC TOT – SC REP – SC TRA	SCerr/GLerr	
Total	(tra)(blo-1)	((Tr1) ² +(Tr2) ² ++(Trn) ²)-FC		

Factor de corrección = Σ (tra)² / (rep) (tra)

Coeficiente de variación es el cociente de la desviación estándar con respecto a la media, que se expresa como un porcentaje.

 $CV = (\sqrt{CME}) / \bar{x} del experimento$

3.1.8 Método estadístico

Se utilizo el análisis de varianza porque permite detectar diferencias significativas entre los tratamientos, asignar diferencias a otras fuentes de error como los sujetos, los grupos, los períodos y causas aleatorias, las cuales calificamos como error experimental. La prueba de rango múltiple de Tukey (Steel y Torrie, 1960) se usa en experimentos que implican un número elevado de comparaciones. El valor para realizar las comparaciones se obtiene en la siguiente forma:

Diferencia mínima significativa de Tukey = q_{α} (p,n₂) S \bar{x} , donde:

 q_{α} = valor de tablas

p = número de tratamientos

n₂ = grados de libertad del error

S $\bar{x} = \sqrt{\text{(cuadrado medio del error/r)}}$

3.1.9 Variables estudiadas

Proteína cruda (PC), materia seca (MS), fibra detergente neutro (FDN), fibra detergente ácido (FDA), lignina detergente ácido (LIG), digestibilidad *in vitro* de la materia seca (DIV) y energía de ganancia de peso (ENG).

3.1.10 <u>Desarrollo del experimento</u>

En el Campo Experimental del CUCBA, el 27 de junio del 2009 se sembraron a mano, en condiciones de temporal, 119 poblaciones de maíz nativo colectadas por IMAREFI en el ciclo 2005 O/I. El cultivo se manejó en forma similar a las siembras comerciales, la diferencia fue la fertilización a la siembra con 50-50-0 y densidad de 45,000 plantas/ha.

Se obtuvieron muestras de cuatro plantas de cada entrada; las plantas completas se picaron a un tamaño aproximado de 2.5 x 2.5 centímetros. Se eligieron cuatro plantas representativas de cada material incluido, en la etapa fenológica de 4/4 del grano en estado masoso; el material se homogeneizó y una muestra de un kilogramo se usó para efectuar los análisis. La muestra se colocó en bolsas de plástico que se cerraron herméticas y se llevaron al Laboratorio de Nutrición Animal del CUCBA.

Las plantas se cortaron entre 39 y 48 días después de la floración, en la etapa fenológica 4/4 de grano masoso, para obtener información sobre el estado de las fibras de maíz maduro.

IV. RESULTADOS Y DISCUSIÓN

Los resultados del presente trabajo se organizaron en cuadros y figuras. La información completa de todas las colectas y todas las variables se ubicó en el Cuadro A.15 del Apéndice. Los cuadros completos de análisis de varianza para las siete características estudiadas, están disponibles en los Cuadros A.1 a A.7 del Apéndice. Los Cuadros A.8 a A.14 contienen el agrupamiento de Tukey de las colectas, para cada variable individual.

Para facilitar la interpretación, también se elaboraron cuadros en los que se incluye el grupo estadístico superior identificado para cada variable. Con el mismo propósito, se procedió a obtener el promedio de cada carácter estudiado en cada grupo racial, el cual se presenta en forma de figuras.

Para colectas, todas las variables fueron significativas al 5% de probabilidad. Esto significa que las colectas de maíz incluidas en este trabajo son diferentes en las siete variables consideradas (Cuadro 4.1).

CUADRO 4.1. VALORES DE F CALCULADA PARA REPETICIONES Y TRATAMIENTOS DE SIETE VARIABLES EVALUADAS EN 120 COLECTAS DE MAÍCES NATIVOS.

FV	ENG	MS	PC	FDN	FDA	LIG	DIV
Repeticiones	3.04ns	3.5ns	0.25ns	2.38ns	1.02ns	0.14ns	3.04ns
Colectas	19.71*	31.1*	48.28*	102.16*	60.57*	51.03*	19.71*

ns = no significativo; * = significativo al 5% de probabilidad.

ENG = energía neta de ganancia de peso; MS = materia seca; PC = proteína cruda; DFN = fibra detergente neutro; FDA = fibra detergente ácido; LIG = lignina; DIV = digestibilidad *in vitro*.

En todas las variables, la F calculada para repeticiones no fue significativa.

4.1 Energía neta de ganancia de peso (ENG)

En el Cuadro 4.2 puede observarse que para el carácter energía neta de ganancia de peso, en el primer grupo estadístico se identificaron dos colectas de la raza *Ancho* (M05099 y M0502); tres de *Mushito* (M05082, M05081 y M05072); tres de *Tabloncillo* (M05024, M05023 y Tabloncillo típico); finalmente una de *Tuxpeño* (INIFAP30) y otra de *Elotes occidentales* (M05053). El rango de ENG de este grupo estadístico superior fue de 1.1744 a 1.4207 Mcal/kgMS. El Cuadro A.8 del apéndice muestra los 120 maíces estudiados para ENG.

CUADRO 4.2. COLECTAS DE CADA RAZA QUE APARECEN EN LOS PRIMEROS GRUPOS ESTADÍSTICOS PARA ENERGÍA NETA DE GANANCIA DE PESO.

COLECTA	RAZA	ENG (Mcal/kg MS)
M05099	Ancho	1.4207 a
INIFAP 30	Tuxpeño	1.2995 ab
M05082	Mushito	1.2838 abc
M05024	Tabloncillo	1.2443 abcd
M05002	Ancho	1.2290 abcde
M05023	Tabloncillo	1.2100 abcde
M05081	Mushito	1.1947 abcde
M05053	Elotes Occidentales	1.1798 abcde
Tabloncillo	Tabloncillo	1.1792 abcde
M05072	Mushito	1.1744 abcde

Para tener una visión en conjunto de las diferencias entre las 14 poblaciones raciales y las generaciones avanzadas, se graficó el promedio de ENG; se consideró el total de las colectas disponibles.

En la Figura 4.1, se observa que las razas de maíz que mostraron en promedio los valores más elevados de ENG son *Ancho* (1.26 Mcal/kg MS), *Elotes occidentales* (1.16), *Tuxpeño* (1.15), *Dulce, Pepitilla* y *Tabloncillo* (los tres con 1.11).

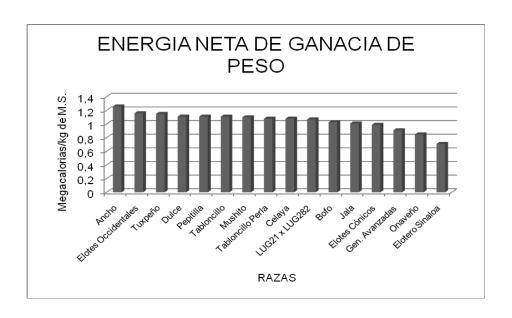


FIGURA 4.1. PROMEDIO DE ENERGÍA NETA DE GANANCIA DE PESO (Mcal/kg MS) DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

En los híbridos de maíz comerciales se calcula la energía neta de lactancia porque generalmente se usan para ensilaje. En cambio, los agricultores y ganaderos con más frecuencia aprovechan los maíces nativos para alimentar el ganado de carne, razón por la cual en este trabajo se estimó la energía neta de ganancia de peso.

Evaluaciones en ocho entidades federativas de México, muestran que la ENL de los híbridos comerciales varía entre 1.2 y 1.6 Mcal/kg MS (Báez et al., 1999, 2000, 2001; Faz et al., 2000; Herrera et al., 1997; Núñez et al., 2003). No se encontraron referencias de la calidad nutricional del maíz en estado maduro, por eso se toma como punto de comparación la información sobre ensilados. En el presente trabajo, el grupo de colectas con mejor ENG presentó de 1.17 a 1.42 Mcal/kg MS, de las razas *Ancho, Tuxpeño, Mushito, Tabloncillo y Elotes Occidentales*. Las colectas señaladas en el Cuadro 4.2 pueden proporcionar una adecuada energía a los rumiantes en engorda. Estos materiales también muestran una mejor energía que el híbrido amarillo LUG21 x LUG282, cuya ENG es de 1.07, estadísticamente inferior a las colectas del Cuadro 4.2.

Los híbridos mencionados en la literatura se cosecharon para ensilaje, cuando el grano estaba en la etapa fenológica de elote con 2/4 del grano masoso. Los maíces nativos del trabajo presente se cosecharon en la etapa fenológica cercana a la madurez fisiológica, con el grano duro. Como la lignificación aumenta a medida que el maíz madura y disminuye la digestibilidad (Núñez *et al.*, 1999), las

diferencias encontradas entre los resultados de este trabajo y los de otros estudios pueden deberse a dicho fenómeno.

Las diferencias ambientales también pudieron ejercer influencia en el comportamiento de los materiales señalados en la literatura y los del presente trabajo. Las pruebas de los híbridos comerciales se realizaron bajo riego, en ambientes templados, en localidades entre 1700 y 1900 msnm, mientras que los cultivares nativos fueron evaluados en el ambiente subtropical de Zapopan, Jalisco a 1500 msnm, en condiciones de temporal. En las regiones templadas el maíz madura más despacio, y probablemente se lignifique también a un ritmo menor.

La identificación en este trabajo de colectas con energía comparable a la de los híbridos, sugiere que entre los maíces nativos señalados existe materia seca cuya digestibilidad puede ayudar a formar maíces forrajeros con mejor capacidad nutricional. Es interesante observar que el conocimiento acerca de estos valores en los maíces de Occidente, no existía hasta antes de realizar los análisis que aquí se informan, por lo que la contribución a mejorar la comprensión de esta característica en nuestros maíces, también refuerza la importancia de la conservación de los mismos. No solo son materiales con potencial forrajero, son también germoplasma diferente al que se utiliza en el presente en los híbridos comerciales. Los programas de mejoramiento requieren de un flujo continuo de germoplasma que amplíe la base sobre la que se realiza la selección. Este grupo de maíces ofrece una posibilidad interesante, en particular en la búsqueda de mejores y diferentes formas de mantener la sustentabilidad de la actividad agropecuaria.

4.2 Materia seca (MS)

Las colectas incluidas en el Cuadro 4.3 corresponden al primer grupo estadístico obtenido. Los grupos raciales que aportaron el mayor número de colectas al conjunto estadístico superior fueron *Tabloncillo Perla* (M05090, M05094, M05093, e INIFAP23); *Mushito* (M05050 y M05080); y *Tabloncillo* (M05091). En el apéndice, el Cuadro A.9 muestra los valores de MS de los 120 maíces incluidos en el presente estudio.

CUADRO 4.3. COLECTAS DE CADA RAZA QUE APARECEN EN EL PRIMER GRUPO ESTADÍSTICO PARA % MATERIA SECA.

COLECTA	RAZA	% MATERIA SECA
M05090	Tabloncillo Perla	91.46 a
M05094	Tabloncillo Perla	91.36 a
M05093	Tabloncillo Perla	89.76 a
M05050	Mushito	84.88 a
M05091	Tabloncillo	81.56 ab
M05080	Mushito	80.30 ab
INIFAP 23	Tabloncillo Perla	80.11 ab

Al promediar el total de los datos de las colectas, la Figura 4.2 muestra que las razas de maíz que mostraron en promedio los valores más elevados de materia seca son *Elotes Cónicos* (68.1%), *Elotes Occidentales* (62.97), *Onaveño* (57.6), *Ancho* (56.8) y *Tabloncillo* (56.1).

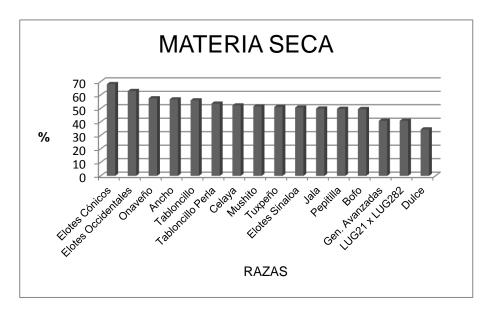


FIGURA 4.2. PROMEDIO DE MATERIA SECA (%) DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

La materia seca es el total de compuestos que la planta acumula según su metabolismo (Pond y Church, 2003). El contenido de materia seca en un forraje es importante porque en la medida que haya más materia seca, habrá más nutrientes disponibles para el ganado.

Cuatro de las nueve colectas de *Tabloncillo Perla*, están en el primer grupo estadístico con un alto contenido de materia seca (Cuadro 4.3). Esto se debe a que *Tabloncillo Perla* es una raza de ciclo intermedio precoz, con 65 días a espigamiento (Martín, 2007), por lo que al momento del muestreo cuando el grano

estaba maduro, la planta se observó con un bajo contenido de humedad. Resultados de otros investigadores (Arguillier *et al.*, 2000; Peña *et al.*, 2002), muestran que los maíces de ciclo intermedio precoz, tienen mayor flexibilidad para producir materia seca de calidad, lo que permite una mejor alimentación para el ganado, como se observó en *Tabloncillo Perla*. Colectas de razas con ciclo vegetativo más largo, entre 75 y 80 días a espigamiento (Martín, 2007), como *Mushito*, *Tuxpeño* y *Elotes Occidentales* tienen buena capacidad de acumulación de materia seca, aunque en menor proporción que *Tabloncillo Perla*.

En este trabajo se observó que las colectas con los valores más altos de ENG, tienen cantidades variables de materia seca, lo cual coincide con lo encontrado por Wiersma *et al.* (1993); Núñez (1999) y Laurer *et al.* (2001), quienes señalan que los maíces de alto rendimiento de grano, no siempre correlacionan con la calidad del forraje, y que tampoco existe asociación completa entre el rendimiento de materia seca y el valor energético del forraje.

La calidad y la aceptación por los animales del forraje de maíz, depende de la composición química de la planta, su estado de madurez y las condiciones durante el crecimiento (Hutjens, 1977). De acuerdo a lo anterior, *Tabloncillo Perla* mostró ser más eficiente para acumular materia seca que las otras razas, ya que en un tiempo más corto, formó una cantidad proporcionalmente mayor de materia seca de las 14 estudiadas (Figura 4.2).

4.3 Proteína cruda (PC)

El grupo estadístico con los valores más altos de proteína de acuerdo a la prueba de rango múltiple de Tukey (Cuadro 4.4), está formado por las colectas M05083 (*Tuxpeño*) y M05087 (*Mushito*).

También se consideran para propósitos de interpretación, las colectas del segundo grupo estadístico, con la idea de tener una visión más amplia del comportamiento racial para el carácter proteína cruda. Las razas *Tuxpeño* (M05038 y M04003); *Mushito* (M05087, M05083, M05069 y M05081) y *Tabloncillo Perla* (M05090), al considerar este criterio, conforman los complejos raciales con materiales de mejor proteína.

CUADRO 4.4. COLECTAS DE CADA RAZA QUE APARECEN EN EL PRIMER GRUPO ESTADISTICO PARA % DE PROTEÍNA (Tukey, p = 0.05).

COLECTA	RAZA	PC
M05038	Tuxpeño	12.25 a
M05087	Mushito	11.39 ab
M05090	Tabloncillo Perla	11.24 bc
M05083	Mushito	11.21 bcd
M05069	Mushito	11.20 bcd
M04003	Tuxpeño	10.65 bcd
M05081	Mushito	10.51 bcd

Al promediar el total de las observaciones en las colectas, los grupos raciales con los niveles más elevados de proteína son *Dulce* (10.0%), *Mushito* (9.2), *Onaveño* (8.9) y *Elotes Cónicos* (8.7), (Figura 4.3).

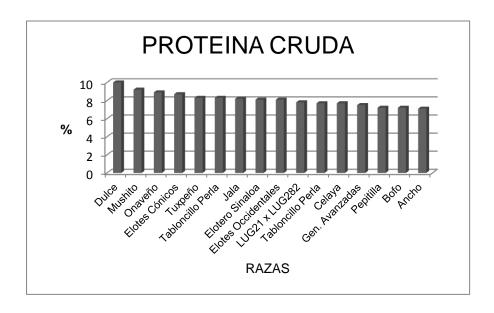


FIGURA 4.3. PROMEDIO DE % PROTEÍNA DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

El maíz es un cultivo que se considera tiene una baja producción de proteína, en comparación con las leguminosas o incluso otras gramíneas como el pasto ballico o ryegrass, que pueden tener el doble de proteína que el maíz. Las evaluaciones del contenido de proteína en maíces híbridos forrajeros comerciales en México, muestran un rango de 7.0 a 9.8% (Herrera et al., 1997, Báez et al., 1999, 2000, 2001; Faz et al., 2000); otros autores informan sobre niveles de 7.0 a 11.0% (Laurer et al., 2001).

En el presente trabajo fue posible identificar una variación importante en el contenido de proteína cruda de la planta, entre las diferentes colectas y grupos raciales estudiados. Colectas de las razas *Tuxpeño* y *Mushito* como preponderantes, así como una colecta de *Tabloncillo Perla*, tienen entre 10.5 y 12.3% de proteína, que son niveles comparables o ligeramente superiores a los informados en la literatura para híbridos forrajeros comerciales.

Aunque las colectas que tienen un mayor contenido de materia seca son diferentes a las de proteína más elevada, es notable que pertenezcan a los mismos grupos raciales, como son *Mushito*, *Tuxpeño* y *Tabloncillo Perla* (Cuadros 4.3 y 4.4, respectivamente).

Varias razas mostraron buen nivel de proteína, entre 8.5 y 10.7% (Figura 4.3), donde *Dulce* es la de mayor contenido proteico. Sobresale que *Mushito* sea el grupo racial más interesante para este carácter, ya que muchas de sus colectas tienen el mejor nivel de proteína de todos los materiales estudiados.

Esta información, al compararla con los resultados de híbridos comerciales en México, indica que existe un potencial interesante en los maíces nativos para el contenido de proteína, cuyo germoplasma puede ser aprovechado para mejorar este carácter.

4.4 Fibra detergente neutro (FDN)

Puede observarse en el cuadro 4.5, que dentro de la clasificación del grupo estadístico superior, los valores más altos pertenecen a las colectas M05079, M05069 y M05068 de *Mushito*; M05090 y M05094 de *Tabloncillo perla*, con un rango entre 61.38 y 64.61% de FDN. El Cuadro A.11 del apéndice muestra cuales son los valores observados de FDN en los 120 maíces que forman parte de este trabajo.

CUADRO 4.5. COLECTAS QUE APARECEN EN EL PRIMER GRUPO ESTADÍSTICO PARA EL CARÁCTER % DE FIBRA DETERGENTE NEUTRO (Tukey p = 0.05).

COLECTA	RAZA	FDN	
M05079	Mushito	64.61 a	
M05090	Tabloncillo Perla	64.07 ab	
M05069	Mushito	62.65 abc	
M05090	Tabloncillo Perla	61.89 abc	
M05058	Mushito	61.46 bcd	

En la Figura 4.4 se observa que en las razas *Elotes Occidentales, Dulce, Tuxpeño, Mushito y Elotero de Sinaloa* se identificó el mayor porcentaje de FDN de todos los grupos raciales incluidos en este trabajo. Estos valores observados fueron de 52.7 a 57.2%.

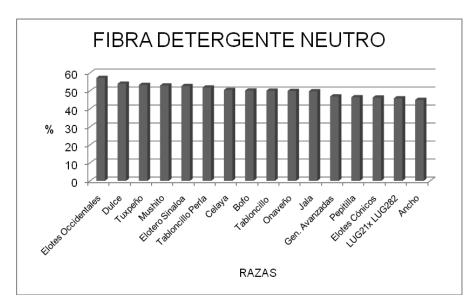


FIGURA 4.4 PROMEDIO DE % FIBRA DETERGENTE NEUTRO DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

La estimación de FDN permite separar las partes de la materia seca solubles y accesibles de las que no son totalmente aprovechables (Tejada, 1985), pero debe mantener un balance con otros componentes nutricionales como la proporción de mazorca. Los híbridos de maíz que tengan más del 54% de su materia seca en la mazorca y fibra detergente neutro inferior a 50%, entregan valores energéticos satisfactorios al ganado (Fonseca *et al.*, 2000; Núñez *et al.*, 2003). Los maíces nativos en los que se encontró un nivel más alto de FDN, pertenecen a las razas *Mushito* y *Tabloncillo Perla*, con un rango de 61.4 a 64.6%, como su FDN es superior a 50% y no tienen más del 50% de materia seca en su mazorca, producen poca energía. En las colectas estudiadas, el carácter FDN no contribuye directamente a la producción de energía.

En base al anterior antecedente, al revisar los promedios de las razas *Onaveño, Jala, Pepitilla, Elotes Occidentales y Ancho* (Gráfica 4.4), se observa un contenido de fibra detergente neutro inferior a 50%. Sin embargo, como sucede en muchos maíces nativos, es poco probable que las colectas de estas razas tengan más del 50% de mazorca como materia seca. Para el carácter FDN, los maíces nativos estudiados tienen una tendencia diferente a los híbridos, como se señala en la literatura.

4.5 Fibra detergente ácido (FDA)

El grupo estadístico con los valores más altos de fibra detergente ácido, de acuerdo a la prueba de rango múltiple Tukey, está formado por colectas de *Tabloncillo Perla (M05090) y Mushito* (M05079 y M05058). La colecta M05094 de *Tabloncillo Perla* es diferente a M05090, pero se ubica en el segundo grupo estadístico con un valor elevado de FDA (Cuadro 4.6). En el Cuadro A.12 del apéndice se encuentran todos los valores obtenidos para este carácter en los 120 maíces analizados.

CUADRO 4.6. COLECTAS QUE APARECEN EN LOS PRIMEROS GRUPOS ESTADISTICOS PARA % DE FIBRA DETERGENTE ÁCIDO (Tukey, p = 0.05).

COLECTA	RAZA	FDA	
M05090	Tabloncillo Perla	43.48 a	
M05079	Mushito	42.73 ab	
M05058	Mushito	40.56 abc	
M05094	Tabloncillo Perla	40.00 bc	
M05069	Mushito	39.79 c	
M05040	Celaya	38.23 c	
M05090	Tabloncillo Perla	38.07 c	
INIFAP 25	Tabloncillo Perla	37.80 c	
M05051	Elotes Cónicos	37.77 c	
INIFAP27	Onaveño	37.56 c	

Las razas de maíz que mostraron el promedio más elevado de FDA son *Elotes Occidentales* (35.8%), *Tuxpeño* (34), *Onaveño* (33.9), *Dulce* (33.9), *Tabloncillo Perla* (33.7) y *Elotero de Sinaloa* (33.2), (Figura 4.5).

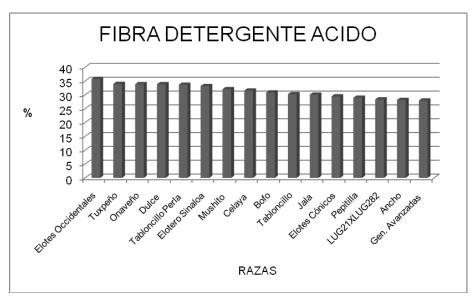


FIGURA 4.5 PROMEDIO DE FIBRA DETERGENTE ACIDO (%) DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

El contenido de FDA aumenta cuando la humedad del suelo se restringe (Núñez *et al.*, 1999). Las colectas de este trabajo, cosechadas cerca de la madurez fisiológica, tuvieron menos humedad en el suelo al final del temporal de lluvias, que las consignadas en la literatura en condiciones de riego. Los híbridos comerciales de maíz en regiones ganaderas de México, tienen FDA que varía entre 20.2 y 39.7% (Báez *et al.*, 1999, 2000, 2001; Faz *et al.*, 2000; Herrera *et al.*, 1997). En el presente trabajo, las colectas con mayor proporción de FDA resultaron de *Tabloncillo Perla* y *Mushito*, en un rango de 40 a 43.8%. Al considerar el promedio por grupo racial, *Elotes Cónicos*, *Tuxpeño*, *Tabloncillo Perla* y *Mushito* muestran los promedios de FDA más altos, entre 33.9 y 35.9%.

Como FDA es una estimación del contenido de la celulosa más la lignina; la diferencia entre FDA y LIG, es la proporción de celulosa que está presente en las fibras del maíz. Un alto contenido de FDA es un indicador de la celulosa disponible para el rumiante, si LIG muestra valores moderados. En esta investigación se encontró que numerosas colectas tienen valores altos de FDA y al mismo tiempo un elevado contenido de LIG, por lo que dan lugar a baja energía para el ganado.

4.6 Lignina (LIG)

Los materiales con el menor contenido de lignina están distribuidos en los grupos raciales *Mushito*, *Tabloncillo Perla*, *Elotes Occidentales*, *Elotero de Sinaloa*, *Ancho* y *Onaveño*. Sus valores se encuentran entre 19.28 y 22.15% (Cuadro 4.7).

Los maíces con más lignina pertenecen a las razas *Mushito, Tabloncillo Perla, Celaya* y *Elotes Cónicos*, con un rango de 32.04 a 36.54%. El resultado completo del análisis de esta variable se ubica en el Cuadro A.13 del apéndice.

CUADRO 4.7. COLECTAS QUE APARECEN EN EL GRUPO ESTADÍSTICO INFERIOR PARA EL CARÁCTER LIGNINA (Tukey, p = 0.05).

COLECTA	RAZA	LIGNINA
INIFAP 46	Tabloncillo	22.15 lmno
M05072	Mushito	22.10 lmno
INIFAP 14	Tabloncillo Perla	21.98 lmno
M05068	Mushito	21.88 lmno
M05089	Elotes Occidentales	21.85 lmno
M05049	Mushito	21.51 lmno
M05048	Mushito	21.46 lmno
INIFAP 26	Onaveño	21.31 lmno
M05002	Ancho	21.27 lmno
M05098	Elotero de Sinaloa	19.99 mno
M05042	Generación Avanzada	19.63 mno
M05053	Elotes Occidentales	19.60 mn
M05093	Tabloncillo Perla	19.34 mn
M05052	Mushito	19.28 n

Las razas de maíz que mostraron en promedio los valores más bajos de lignina son *Ancho* (22.6%), *Pepitilla* (23.2), *Elotes Occidentales* (23.8); estos valores fueron comparables con los del híbrido LUG21xLUG282 (23) y las generaciones avanzadas de híbridos (23.8), (Figura 4.6).

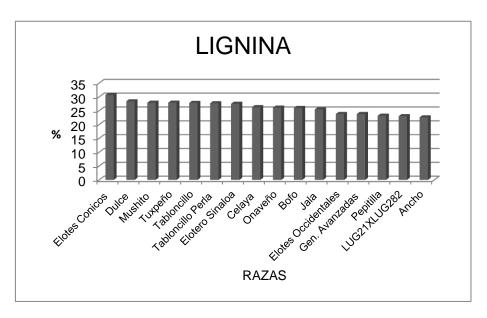


FIGURA 4.6 PROMEDIO DE % LIGNINA DE 14 GRUPOS RACIALES Y GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

Cuando la planta llega a su madurez, aumenta el contenido de fibra en el forraje debido a la presencia de lignina. Los niveles bajos de LIG y altos de FDA, dan lugar a los mejores valores de ENG, porque la energía es inversamente proporcional a la cantidad de fibra no digerible en el forraje (Núñez *et al.*, 1999).

El grupo estadístico con menor contenido de LIG está conformado por colectas de las razas *Mushito, Tabloncillo Perla, Elotes Occidentales, Elotero de Sinaloa, Onaveño,* y *Tabloncillo*, con valores entre 19.28 y 22.15%. En este trabajo, los maíces con mayor ENG son los que tienen al mismo tiempo niveles bajos de LIG.

Desde el punto de vista de la alimentación del ganado, la lignina es una fibra no digerible, por lo que es deseable que se encuentre en menor proporción. Desde el punto de vista estructural, la lignina proporciona soporte y rigidez al tallo, lo que hace posible que la planta permanezca erecta. Se requiere un balance entre un bajo contenido de lignina para facilitar la digestibilidad de la materia seca, y un nivel adecuado de esta fibra para evitar el acame de la planta.

Las colectas de las razas *Tabloncillo Perla*, *Elotes Occidentales*, *Elotero de Sinaloa*, *Ancho* y *Tabloncillo* que identificamos con bajos niveles de lignina, Martín (2007) informa que tienen un promedio de acame de tallo del 8.8% y un promedio de acame de raíz igual a 34.7%. Mientras que las colectas que encontramos con alta lignina, de las razas *Tabloncillo Perla*, *Mushito* y *Celaya*, Martín (2007) encontró que tienen en promedio de acame de tallo 4.6% y acame de raíz de 24.4%. Estas evidencias sugieren que el acame en maíces nativos está relacionado con el contenido de LIG en las fibras de la planta.

4.7 <u>Digestibilidad in vitro de la materia seca (DIV)</u>

Al usar la prueba de Tukey para diferenciar las colectas con mayor digestibilidad de materia seca, se encontró que diez materiales fueron declarados estadísticamente iguales en el primer grupo (Cuadros 4.8 y A.14 del apéndice). *Ancho* muestra dos colectas (M05099 y M05002) con una alta digestibilidad; tres de *Mushito* (M05082, M05081 y M05072); tres de *Tabloncillo* (M05024, M05023 y tabloncillo típico); una de *Tuxpeño* (INIFAP30) y otra de *Elotes Occidentales* (M05053). La DIV de estos materiales osciló entre 75.28 y 83.76%.

CUADRO 4.8. PORCIENTO DE COLECTAS QUE APARECEN EN EL PRIMER GRUPO ESTADÍSTICO DEL ANÁLISIS DE DIGESTIBILIDAD *IN VITRO* DE LA MATERIA SECA (Tukey, p = 0.05).

COLECTA	RAZA	DIV
M05099	Ancho	83.76 a
INIFAP 30	Tuxpeño	79.59 ab
M05082	Mushito	79.05 abc
M05024	Tabloncillo	77.69 abcd
M05002	Ancho	77.16 abcd
M05023	Tabloncillo	76.50 abcd
M05081	Mushito	75.98 abcd
M05053 Tabloncillo	Elotes Occidentales	75.46 abcd
típico	Tabloncillo	75.44 abcd
M05072	Mushito	75.28 abcd

Las razas de maíz que mostraron en promedio los valores más elevados de digestibilidad de la materia seca son *Ancho* (78.3%), *Dulce* (73.1), *Pepitilla* (73.1), *Celaya* (72) y *Bofo* (70.3); el híbrido LUG21xLUG282 tuvo una digestibilidad de 70.9%

(Figura 4.7).

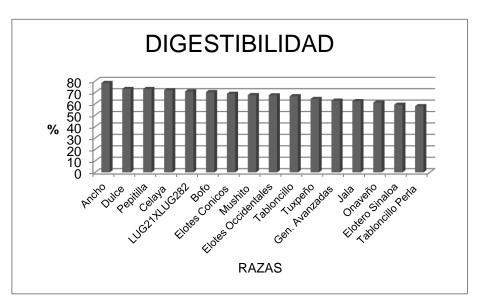


FIGURA 4.7 PROMEDIO DE % DIGESTIBILIDAD DE 14 GRUPOS RACIALES Y LAS GENERACIONES AVANZADAS DEL OCCIDENTE DE MÉXICO.

Una de las razones principales por las que el forraje seco de maíz puede ser menos digerible, es que al madurar la planta aumenta el contenido de lignina, la cual impide que las bacterias del rumen degraden la celulosa y hemicelulosa en compuestos asimilables para el ganado (Wattiaux, 1994). La estimación *in vitro* de la digestibilidad, implica la digestión de la fibra con líquido ruminal y la digestión de las proteínas con toxina ácida para reproducir la degradación que hacen bacterias y enzimas digestivas del abomaso de los rumiantes (Tillery y Terry, 1963). Como la mayor proporción de fibra en el forraje de maíz está en el tallo y las hojas (Lundval *et al.*, 1994), es fundamental que esta fibra sea lo más digerible posible para que el ganado obtenga la energía necesaria para su crecimiento.

De acuerdo con Lundval *et al.* (1994), la digestibilidad de hojas y tallos en maíz difiere entre genotipos con valores que van del 58.0 a 67.6% y de 26.2 a 65.0% respectivamente. En el presente estudio se midió la digestibilidad del total de la planta, incluidos tallos, hojas y mazorcas, por lo que los valores aquí informados son ligeramente diferentes a los del citado autor. Además, el muestreo se efectuó con el grano maduro, a diferencia de lo que señala la literatura en la etapa fenológica de elote, para ensilaje.

En consecuencia, las plantas utilizadas en este trabajo se encontraban en un estado de madurez más avanzado, con menor humedad y más fibras estructurales. Es posible señalar que, aun con la diferencia de metodología, el grupo de colectas con mejor DIV, son de interés porque a pesar de la madurez de la planta, una proporción considerable de su materia seca está disponible para nutrir al ganado bovino.

Laurer et al. (2001) informan que la digestibilidad del forraje de maíces para grano varía entre 54 y 86%. En el presente estudio, los valores más altos de digestibilidad de diez colectas, se encuentran entre 75 y 83.8%. Los grupos raciales a los que pertenecen estos materiales son *Ancho, Tabloncillo, Mushito* y *Tuxpeño*. Estos resultados muestran que los maíces nativos tienen un grado de digestibilidad tan bueno como el de los híbridos, y pueden representar un aporte valioso para una mejor alimentación del ganado; también constituyen una fuente de variación del germoplasma si se utilizan para mejoramiento genético.

La inclusión del híbrido amarillo LUG21 x LUG282 como punto de referencia de un material mejorado, permite establecer que entre las colectas de maíces nativos existe variación y niveles de fibra suficientemente buenos, de los que se puede esperar avance genético si se recombinan y se someten a un esquema de selección adecuado.

En México no hay información disponible sobre la digestibilidad del forraje seco de maíz nativo. La identificación en este trabajo, de materiales con un nivel de digestibilidad comparable a la de los híbridos, permite señalar que en los cultivares nativos hay potencial que puede ser aprovechado para una nutrición más eficiente del ganado de Jalisco.

Para este propósito deberá tomarse en cuenta el grupo racial al que pertenecen los maíces, porque los de raza *Mushito* proceden de la región montañosa de la Sierra Tarasca, con alturas de 2000 msnm o más. Las colectas sobresalientes de *Ancho, Tabloncillo* y *Tuxpeño* tienen mejor adaptación a las alturas intermedias y bajas del Occidente. La incorporación de caracteres agronómicos adecuados como tolerancia al acame y a enfermedades, a partir de líneas mejoradas, será otra de las consideraciones del mejoramiento por realizar.

Los resultados de este trabajo permiten conocer una parte del potencial aun no aprovechado que existe en las poblaciones nativas de maíz, razón por la cual el acervo genético que está en manos de los agricultores tradicionales debe ser preservado, tanto *in situ* como en bancos de germoplasma. Asimismo, el reservorio genético de maíz acumulado en los bancos de germoplasma de México, debe estar disponible para ampliar estudios que permitan entender mejor que es lo que contienen dichos maíces, y como pueden ser de utilidad.

V. CONCLUSIONES

- 1. Las razas que aportaron colectas sobresalientes al carácter de mayor importancia de energía neta de ganancia (ENG), fueron *Ancho* (M05099, M05002); *Mushito* (M05082, M05081, M05072); *Tabloncillo* (M05024, M05023, tabloncillo típico); *Tuxpeño* (INIFAP30) y *Elotes* Occidentales (M05053), con valores bajos de lignina, y que mostraron más energía que el hibrido LUG21xLUG282 usado como referencia.
- 2. La mejor digestibilidad (DIV) se observó en maíces de *Ancho* (M05099, M05002); *Tabloncillo* (M05024, M05023, tabloncillo típico); *Mushito* (M05082, M05081, M05072); *Tuxpeño* (INIFAP30) y *Elotes Occidentales* (M05053), adecuada para ganado de carne; estas colectas tienen mayor digestibilidad que el testigo híbrido.
- 3. En proteína cruda, los maíces nativos de las razas *Tuxpeño* (M05038, M04003); *Mushito* (M05087, M05083, M05069 y M05081) y *Tabloncillo Perla* (M05090) tienen niveles comparables a los informados en la literatura para híbridos forrajeros comerciales.
- 4. *Tabloncillo Perla* es la raza con mayor eficiencia para acumular materia seca, ya que cuatro (M05090, M05094, M05093, INIFAP23) de sus nueve colectas son estadísticamente superiores en este concepto.
- 5. Las razas estudiadas en conjunto, muestran que los valores más bajos de Lignina (LIG) y fibra detergente Acida (FDA), corresponden a valores más elevados de energía neta de ganancia (ENG).
- 6. Las colectas estudiadas mostraron variabilidad y valores suficientemente buenos en sus componentes de calidad de forraje.
- 7. Se acepta la hipótesis que los maíces nativos de Occidente tienen diferencias en la calidad de su forraie.
- 8. Se acepta la hipótesis que hay poblaciones de maíz nativo con calidad forrajera.

VI. LITERATURA CITADA

Anderson, E. and H.C. Cutler. 1942. Races of *Zea mays*. I. Their recognition and classification. Ann. Bo. Gar. 29:69-88.

Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447-1462.

Allen, M. S., D. G. Main, K. A. O'Neil and J. Beck. 1990. Variation in fibers fraction and in vitro true and cell wall digestibility of corn silage hybrids. J. Dairy Sci. 73:29. (Abstr.)

Alcázar A, J. J. 1983. Análisis del comportamiento de maíces mejorados para el trópico húmedo de México. Tesis Maestría en Ciencias. Colegio de Postgraduados, Chapingo, México, 117 pp.

Alcázar A, J. J., 1981 Evaluación de nueve ciclos de selección masal en la variedad de maíz V-520 C. Tesis Profesional, Universidad de Guadalajara 68 pp.

Arguillier, O., V. Medichin y J. Barriere. 2000. Inbred line evaluation and breeding for digestibility-related traits in forage maize. Crop. Sci. 40:1596-1600.

Azcon Bieto, J. y M. Talon. 2000. Fundamentos de fisiología vegetal. McGraw-Hill Interamericana, pp. 11-13. Barcelona España.

Alcalá G., J. 1994. Evaluación de un procedimiento para el cálculo de la estación de crecimiento. Tesis de Licenciatura, Facultad de Agronomía. Universidad de Guadalajara. Zapopan, Jalisco 57p.

Arlington, USA, 1990. Official methods of analysis of the association of official chemists, 15 Th.

Bal, M.A., J.G Coors, y R.D. Shaver. 1997. Impact of the maturity of corn for use as silage in the diets of cows on intake, digestion, and milk production, J Dairy Sci. 80:2497-2503

Báez Duran S.C, Aguilar Ruiz, H. Gutiérrez Quiroz, A. Herrera Avilés y B Martinez Pando. 1999. Evaluación de híbridos para ensilar. Departamento de servicios técnicos agropecuarios Alpura 20 pp.

Báez Duran S.C, Aguilar Ruiz, H. Gutiérrez Quiroz, A. Herrera Avilés y B Martinez Pando. 2000. Evaluación de híbridos para ensilar. Departamento de servicios técnicos agropecuarios Alpura 20 Pp.

Báez Duran S.C, Aguilar Ruiz, H. Gutiérrez Quiroz, A. Herrera Avilés y B Martinez Pando. 2001. Evaluación de híbridos para ensilar. Departamento de servicios técnicos agropecuarios Alpura, 21 pp

Ballard, C.S., E.D. Thomas, D. S. Tsang, P. Mandebvu, C. J. Esnifen, M.I. Endres y M.P. Carter. 2001. Effect of corn silage hybrid on dry yield, nutrient composition, in vitro digestion, intake by dairy heifers, and milk production by dairy cows. J. Dairy Sci. 84:442-452.

Clark, P. W. and L. E. Armentano. 1993. Effectiveness of neutral detergent fiber in whole cottonseed and dried distillers grain compared with alfalfa haylage. J. Dairy Sci. 76:2644-2650.

Contreras, G.F., R. Faz, G. Núñez y R. Herrera Saldaña. 1997. Otra alternativa para la producción de forraje de calidad nutritiva en invierno son los cereales. Revista de la unión regional ganadera de La Laguna. 10:19-20.

Correa, C.E.S., R.D. Shaver, M.N Pereira, J.C. Laurer y K. Kohn. 2002. Relationship between corn vitreosness and ruminal in starch degradability. J. Dairy Sci. 85:3008 – 3012.

Darby H. M. y J. G. Lauer. 2002. Harvest date and hybrid influence on corn forage, yield, quality, and preservation. Agron. J. 94: 559-566.

Dhiman, T. R., M. S. Zaman, I. S. MacQueen y R. L. Boman. 2002. Influence of corn processing and frecuency of feeding on cow performance, J. Dairy Sci. 85:217-226.

Duvick, D. N., y K. G. Cassia. 1999. Post-green revolution trends in yield potential of temperate maize in north-central United States. Crop. Sci. 39:1622-1630

Faz Contreras, R., G. Núñez Hernández, R. Herrera y Saldaña. 2000. Parcela demostrativa de híbridos de maíz y sorgo forrajeros para ensilar en la Comarca Lagunera. Inifap, Sagar; Grupo LALA. 13 pp.

Firkins, J. L. 1977. Effects of feeding nonforage fiber sources on site of fiber digestion. J. Dairy Sci. 80:1426-1437.

Flores L., H.E. 1994. Análisis agroclimático del Noroeste de Jalisco, México, para el manejo de la producción de maíz de temporal. Tesis de Maestría en Ciencias. Centro de Hidrocincitas. Colegio de Postgraduados. Montecillo, México. 155p.

Fonseca, A.J.M., A.R.J. Cabrita, A.M. Lag y E. Gomes. 2000. Evaluation of chemical composition and particle size of maize silages produced in north- west of Portugal. Anim. Feed Sci. Tech. 83: 173-183.

Goodrich, R. D. and J. C. Meuse. 1985. Corn and sorghum silages. *In*: Forages. The science of grassland agriculture. M.E Heath, R.F Barnes, D.S. (eds.)

Hernández Góbora, J., C. Jiménez Plascencia, M. Galindo Torres y A. Rodríguez Estrada. 2008. Manual de prácticas de bromatología. Departamento de producción animal. CUCBA, UDG. 42 pp.

Hernández X., E. y G. Alanís. 1970. Estudio morfológico de cinco razas de maíz de la Sierra Madre Occidental de México; implicaciones filogenéticas y fitogeográficas. Agrociencia 5 (1): 3-30.

Herrera y Saldaña, R., F. Eduardo Contreras., R. Faz Contreras y G. Núñez 1997 Resultados de la evaluación de 17 híbridos de maíz y 8 variedades de sorgo en la Comarca Lagunera. III Conferencia internacional sobre nutrición y manejo. Gómez Palacios, Durango, México.122 pp.

Hutjens, M.F. 1997. Evaluating effective fiber. Four state applied nutrition and management conference proc. Lacrosse, WI. p. 12.

Hutjens, M.F. 1997. Importancia de la calidad de los forrajes para maximizar la producción de leche a bajo costo. Universidad de Illinois, Urbana, III. p. 2.

Jiménez Cordero, A. A. 1979. Estabilidad del rendimiento y de algunos componentes fisicotécnicos en sorgo (*Sorghum bicolor* (L) Moench). Tesis M. C. Colegio de Postgraduados, Chapingo, Mex. pp. 93-94.

Jollife, P.A., A.J.P. Tarimo and G.W. Eaton.1990. Plant growth analysis growth and yield component responses to population density in forage maize. Annals of Botany 65:55 - 70

Johnson, J. H. Harrison, C Hunt, K. Shinners, C. G. Doggett y D. Sapienza. 1999. Nutritive value of corn silage as affected by maturity and mechanical processing: A contemporary review. J. Dairy Sci. 82:2813-2825.

Karlen, D.L. and C.R. Camp. 1985. Plant density, distribution, and fertilizer effects on yield and quality of irrigated corn silage. Commun. Soil Sci. Plant Anal. 16:55-70.

Lauder, G.J., J.G. Coors, J. and P.J. Flanery. 2001 Forage yield and quality of cultivars developed in different eras. Crop Sci. 41: 1449-1455.

Laurer, J., J.G. Coors and R. Shaver. 2001. Corn silage brown midrib, waxy high oil and others. *In*: Proceedings of the 31th State California alfalfa and forage symposium. Modesto CA. Coperative Extension Srevice, University of California.

Lundval J.P., D.R. Buxton, A.R. Hallauer and J.R. George. 1994. Forage quality variation among maize inbreds: *in vitro* digestibility and cell-wall components. Crop Sci. 34: 1672 – 1678.

McClintock, B., T.A. Kato Y. y A. Blumenstein. 1981. Constitución cromosómica de las razas de maíz. Su significado en la interpretación de relaciones entre ls razas y variedades en las Américas. 521 p. Colegio de Postgraduados, Chapingo. México.

Martín López, José Guadalupe. 2007. Evaluación y caracterización de maíces criollos en el occidente de México. Tesis M. C. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. 83 pp.

Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481.

Michael K. Woolford, 1997. Silage fermentation and its control. Wrexham County Review, England. p. 18.

Moe, P. W. and H. F. Tyrrel. 1972. The net energy value of feeds for lactation. J. Dairy Sci. 55:945-958.

National Research Council. 2001. Nutrient Requirements of Dairy Cattle. Seventh revised edition. The National Academy of Sciences. U.S.A. 381 pp.

Núnez H.G., G.F. Contreras, C.R. Faz y S.R. Herrera. 1999. Componentes tecnológicos para La producción de ensilajes de maíz y sorgo. SAGAR INIFAP.

Centro Regional Norte Centro Campo Experimental La Laguna. Torreón Coahuila Méx. 52 pp.

Núñez, H.G., G. Cantú y B.J.E. 2001. Producción, composición química y digestibilidad del forraje del sorgo x sudán de nervadura café en la región norte de México. Tec. Pec. Méx.: 38(3) Pág. 177-187.

Núñez, H.G., E.F. Contreras G. y R. Contreras F. 2003. Características agronómicas y químicas en híbridos de maíz para forraje de alto valor energético. Tec. Pec. Méx.: 41 (1):37-48.

Ortega P., R. 1979. Reestudio de las razas mexicanas de maíz. Informe anual. Campo Agr. Exp. Mesa Central. INIA. Chapingo, México.

Peña R., A., H.G. Núñez y F. González C. 2002. Potencial forrajero de poblaciones de maíz y relación entre atributos agronómicos con la calidad. Tec. Pec. Méx. 40 (3): 215-228.

Pioneer Hi-Bred International, Inc. 1990. Pioneer forage manual, a nutritional guide. Des Moines, Iowa, EUA. 24p.

Pond, W.G. y D.C. Church. 2003. Fundamentos de nutrición y alimentación de animales, Editorial Limusa, S.A de C.V. 205p.

Ramírez Vega, Humberto. 2006. Parámetros fenoproductivos del maíz forrajero y su asociación con el índice potencial de rendimiento lechero. Tesis doctorado en ciencias. Tesis doctorado en ciencias. Universidad de Colima. Tecomán, Colima. 106p.

Registro de precipitación del Observatorio Meteorológico, periodo 1960-2005. Bosque los Colomos, Guadalajara, Jalisco. 20p

Ron Parra, J., J.J. Sánchez González, Á.A. Jiménez Cordero, J. . Carrera Valtierra, J.G. Martín López, M.M. Morales Rivera, L. de la Cruz Larios, S. Hurtado de la Peña, S. Mena Murguía y J.G. Rodríguez Flores. 2006. Maíces nativos del Occidente de México I. Colectas 2004. Scientia-CUCBA 8 (1): 1-139.

Ruiz C., J.A. 1988. Determinación de la estación de crecimiento y precocidad requerida para el maíz en el sur de Zacatecas. *In*: Memorias del XXI Congreso Nacional de la Ciencia del Suelo. Cd. Juarez, Chihuahua, México. pp. 133.

Ruiz Corral, José Ariel, José Luis Ramírez Díaz, Francisco Javier Flores Mendoza y José de Jesús Sánchez González. 2000a. Cambio climático y su impacto sobre la estación de crecimiento de maíz en Jalisco, México. Rev. Fitotec. Mex. Vol. 23:169-182.

Ruiz Corral, José Ariel, José Luis Ramírez Díaz, Francisco Javier Flores Mendoza y José de Jesús Sánchez González. 2000b. Cambio climático y efectos sobre las áreas potenciales para maíz en Jalisco, México. Rev. Fitotec. Mex. Vol. 23:183-194.

Sánchez G., J.J. 1989. Relationships among the Mexican races of Maize. Ph. D. dissertation (unpublished) pp. 12-15. North Carolina State University. Raleigh, N.C.

Sánchez G., J.J., M.M. Goodman and C.W. Stuber. 2000. Isozymatic and morphological diversity in the races of maize of México. Economic Botany 54(1):72-85.

Secretaria de Agricultura, Ganadería y Desarrollo Rural (SAGAR). 1997. Estadísticas agrícolas anuales. Delegación de la SAGAR en el Estado de Jalisco. Subdelegación de Agricultura. Guadalajara, Jalisco, México. 47p.

Swain, S.M. and L.E. Armentano. 1994. Quantitative evaluation of fiber from nonforage sources used to replace alfalfa silage, J. Dairy Sci, 77: 2318 – 2331

Steel, Robert G., and James H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill book company, inc. New York. 481p.

Tejada de Hernández, I. 1985. Manual de laboratorio para análisis de ingredientes utilizados en la alimentación animal. Patronato de apoyo a la investigación y experimentación pecuaria en México, A.C. Km. 15.5 Carr. México-Toluca, Palo Alto, D.F. 276 p.

Tetio-Kagho, F. and F.P. Gardner 1988 Response of maize hybrids grown in ontario from 1959 to 1988. Crop Sci, 29: 1365 – 1371.

Tirado G., N.D. y M.I. Carrillo D. 2004. Evaluación de cruzas de prueba para la producción y calidad forrajera de líneas de maíz (*Zea mays* L,) en la zona norte centro de México. Tesis de licenciatura Instituto Tecnológico Agropecuario de Aguascalientes. 60 p.

Tilley, J.M.A. and R.A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassld. Soc. 18: 119-128.

Tollenar, M. 1989. Genetic improvement in grain yield of commercial hybrids grown in Ontario from 1959 to 1988. Crop Sci. 29: 1365-1371.

Vaughan, K. K., S. M. Swain and L. E. Armentano. 1991. Effectiveness of NDF from ground corn cobs and wheat midlings compared to alfalfa silage. J. Dairy Sci. 74 (Suppl. 1):220 (abstract).

Van Soest, P. J. and R. H. Wine, 1968. Chemical Analysis. J. Assoc. of Chem. Anals 51:780.

Van Soest, P.J., J.B. Robertson and B.A. Lewis 1991. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharids in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597

Wattiaux, Michel A. 1994. Guia técnica lechera, nutrición y alimentación. Traducción de J. Homan, María C. Moreno y Ana Ma. Rodríguez. Instituto Babcock para investigación y desarrollo internacional para la industria lechera. Programa internacional de agricultura. Universidad de Wisconsin, Madison, E. U. A. 130 p.

Wellhausen, E.J., L.M. Roberts, E. Hernández X. y P.C. Mangelsdorf. 1951. Razas de Maíz en México, Su origen, características y distribución. O.E.E., Secretaría de Agricultura y Ganadería. Folleto Téc. Núm. 55.

Wiersma, D. W., P.R. Carter, K.A. Albretch, and J.G. Coors. 1993. Kernel milkline stage and corn forage yield, quality, and dry matter content. J. Prod, Agric. 6: 94-99.

APÉNDICE

CUADRO A.1 CUADRO DE ANVA DE ENERGIA NETA DE GANACIA DE PESO (Mcal/kg MS) EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL		SC	CM	Fc	Ft0.05
Repeticiones		2	0.04541536	0.02270768	3.04184217N.S.	3.07
Colectas		119	17.5137277	0.14717418	19.7149445*	1.22
Error		238	1.78	0.00746511		
Total		359	19.34			

CV = 0.0890

CUADRO A.2 CUADRO DE ANVA DE MATERIA SECA (Mcal/kg MS) EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL	SC	CM	Fc	Ft0.05
Repeticiones	2	122.6	61.3	3.5 *	3.07
Tratamientos	119	64445.3	541.6	31.1 *	1.22
Error	238	4144.5	17.4		
Total	359	68712.5			

CV = 0.0780

CUADRO A.3 CUADRO DE ANVA PROTEINA (%) EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO

FV	GL		SC	CM		Fc	Ft0.05
Repeticiones		2	0.05		0.03	0.25 N.S.	3.07
Tratamientos		119	599.25		5.04	48.28 *	1.22
Error		238	24.83		0.10		
Total		359	624.13				

CV = 0.0378

CUADRO A.4 CUADRO DE ANVA PARA % DE FIBRA DETERGENTE NEUTRO EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL	SC	CM	Fc	Ft0.05
Repeticiones	2	5.21	2.60	2.38 N.S.	3.07
Tratamientos	119	13281.17	111.61	102.16*	1.22
Error	238	260.00	1.09		
Total	359	13546.37			

CV = 0.020

CUADRO A.5 CUADRO DE ANVA DE % FIBRA DETERGENTE ÁCIDO EN 120 COLECTAS DE MAÍCES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL	SC	CM	Fc	Ft0.05
Repeticiones	2	1.82	0.91	1.02 N.S.	3.07
Tratamientos	119	6451.44	54.21	60.57 *	1.22
Error	238	213.02	0.90		
Total	359	6666.28			

CV = 0.0296

CUADRO A.6 CUADRO DE ANVA DEL % DE LIGNINA EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL	SC	CM	Fc	Ft0.05
Repeticiones	2	0.23	0.12	0.14 N.S.	3.07
Tratamientos	119	5074.79	42.65	51.03 *	1.22
Error	238	198.89	0.84		
Total	359	5273.91			

CV = 0.0343

CUADRO A.7 CUADRO DE ANVA DEL % DE DIGESTIBILIDAD EN 120 COLECTAS DE MAICES NATIVOS DEL OCCIDENTE DE MÉXICO.

FV	GL	SC		СМ	Fc	Ft 0.05
Repeticiones		2	53.89	26.94	3.04 N.S	3.07
Tratamientos	11	9 20	780.67	174.63	19.71 [*]	1.22
Error	23	8 2	108.11	8.86		
Total	35	9 22	942.67			

CV = 0.045

CUADRO A.8 VALORES DE ENERGÍA NETA DE GANACIA DE PESO EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

	_		ENG	
ENT	COLECTA	RAZA	(Mcal/kgMS)	
4	M05099	Ancho	1.4207	а
108	INIFAP 30	Tuxpeño	1.2995	ab
52	M05082	Mushito	1.2838	abc
72	M05024	Tabloncillo	1.2443	abcd
1	M05002	Ancho	1.2290	abcde
71	M05023	Tabloncillo	1.2100	abcde
51	M05081	Mushito	1.1947	abcde
14	M05053	Elotero	1.1798	abcde
62	Tabloncillo	Tabloncillo	1.1792	abcde
43	M05072	Mushito	1.1744	abcde
47	M05077	Mushito	1.1506	bcdef
5	M05009	Bofo	1.1461	bcdef
56	M05086	Mushito	1.1439	bcdef
3	M05020	Ancho	1.1351	bcdef
58	M05088	Mushito	1.1347	bcdef
17	M05098	Elotero de Sinaloa	1.1345	bcdef
93	M05032	Gen. Avanzadas	1.1249	bcdef
7	M05045	Celaya	1.1168	bcdef
10	M05041	Celaya	1.1128	bcdef
11	M05046	Dulce	1.1119	bcdef
61	M05016	Pepitilla	1.1115	bcdef
75	M05036	Tabloncillo	1.0997	bcdef
119	INIFAP 56	Bofo	1.0887	bcdef
95	INIFAP 05	Tabloncillo	1.0849	bcdef
99	INIFAP 12	Tuxpeño	1.0830	bcdef
81	M05093	Tabloncillo Perla	1.0799	bcdef
66	M05011	Tabloncillo	1.0774	bcdef
98	INIFAP 11	Tuxpeño	1.0746	bcdef
92	LUG21xLUG282	·	1.0742	bcdef
8	M05039	Celaya	1.0692	bcdef
39	M05068	Mushito	1.0538	bcdef
13	M05054	Elotes Conicos	1.0434	bcdef
55	M05085	Mushito	1.0410	cdef
91	M05042	Gen. Avanzadas	1.0402	cdef
77	M05056	Tabloncillo	1.0389	cdef
69		Tabloncillo	1.0358	cdef
50	M05080	Mushito	1.0352	cdef
46	M05076	Mushito	1.0224	def
60	M05097	Mushito	1.0198	def

-			ENG	
ENT	COLECTA	RAZA	(Mcal/kgMS)	
9	M05040	Celaya	1.0115	def
33	M05061	Mushito	1.0105	def
120	INIFAP 57	Bofo	1.0099	def
23	M05030	Jala	1.0092	def
89	Tabloncillo RC1	Tabloncillo	1.0085	def
38	M05067	Mushito	1.0025	def
44	M05073	Mushito	0.9983	def
15	M05089	Elotes Occidentales	0.9960	def
53	M05083	Mushito	0.9791	efg
54	M05084	Mushito	0.9751	fg
67	M05013	Tabloncillo	0.9695	fg
57	M05087	Mushito	0.9681	fg
31	M05059	Mushito	0.9624	fg
65	M05006	Tabloncillo	0.9603	fg
35	M05063	Mushito	0.9563	fg
59	M05096	Mushito	0.9502	fg
45	M05075	Mushito	0.9482	fg
96	INIFAP 07	Tabloncillo	0.9452	fg
101	INIFAP 22	Tabloncillo	0.9438	fg
21	M05004	Jala	0.9342	fg
27	M05052	Mushito	0.9341	fg
28	M05055	Mushito	0.9305	fg
12	M05051	Elotes Conicos	0.9272	fg
48	M05078	Mushito	0.9267	fg
26	M05050	Mushito	0.9228	fg
105	INIFAP 26	Onaveño	0.9110	fg
113	INIFAP 42	Elotero de Sinaloa	0.9078	fg
41	M05090	Tabloncillo Perla	0.9069	fg
34	M05062	Mushito	0.906	gh
30	M05058	Mushito	0.9052	gh
20	M05003	Jala	0.9022	gh
79	M05092	Tabloncillo	0.8974	gh
29	M05057	Mushito	0.8963	gh
88	M05038	Tuxpeño	0.8892	gh
42	M05071	Mushito	0.8868	gh
64	M05001	Tabloncillo	0.8853	gh
32	M05060	Mushito	0.8850	gh
6	M05015	Bofo	0.8794	gh
40	M05069	Mushito	0.8703	gh
87	M05014	Tux	0.8677	gh
73	M05033	Tab	0.8672	gh

			ENG	
ENT	COLECTA	RAZA	(Mcal/kgMS)	
25	M05049	Mushito	0.8638	gh
97	INIFAP 08	Tabloncillo	0.8594	gh
19	M05017	Elotero de Sinaloa	0.8583	gh
118	INIFAP 55	Tuxpeño	0.8466	gh
116	INIFAP 50	Elotes Occidentales	0.8434	gh
76	M05044	Tabloncillo	0.8413	gh
114	INIFAP 46	Tabloncillo	0.8250	gh
78	M05091	Tabloncillo	0.8238	gh
16	M05095	Elotes Ocidentales	0.8198	gh
24	M05048	Mushito	0.8195	gh
103	INIFAP 24	Onaveño	0.8108	gh
110	INIFAP 32	Tuxpeño	0.8019	gh
36	M05064	Mushito	0.7961	gh
49	M05079	Mushito	0.7951	gh
63	M04001	Tabloncillo	0.7934	gh
82	M05094	Tabloncillo Perla	0.7920	gh
104	INIFAP 25	Tabloncillo Perla	0.7749	gh
111	INIFAP 35	Tabloncillo Perla	0.7595	gh
85	M05005	Tuxpeño	0.7576	gh
70	M05022	Tabloncillo	0.7548	gh
84	M04003	Tuxpeño	0.7520	gh
117	INIFAP 52	Elotero de Sinaloa	0.7360	gh
115	INIFAP 48	Elotes Occidentales	0.7145	hi
112	INIFAP 40	Elotero de Sinaloa	0.6692	hi
86	M05008	Tuxpeño	0.6568	hi
74	M05034	Tabloncillo	0.6553	hi
109	INIFAP 31	Tuxpeño	0.6323	hi
83	M04002	Tuxpeño	0.6163	hi
94	M05037	Gen. Avanzadas	0.5763	ij
80	M05090	Tabloncillo Perla	0.5673	ij
106	INIFAP27	Onaveño	0.5631	ij
107	INIFAP 28	Tabloncillo	0.5631	ij
102	INIFAP 23	Tabloncillo Perla	0.5575	ij
68	M05018	Tabloncillo	0.5516	ij
2	M05100	Tabloncillo Perla	0.5263	ij
90	M05043	Gen. Avanzadas	0.5092	ij
18	M05007	Elotero de Sinaloa	0.3783	ij
22	M05029	Jala	0.3540	ij
100	INIFAP 14	Tabloncillo perla	0.2389	k
37	M05066	Mushito	0.0603	k
		DMS Tukey 0.05=	0.2499	

CUADRO A.9 VALORES DE % DE MATERIA SECA EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

	001 5074	D 4 7 4	0/ 550	
ENT		RAZA	% MS	
	M05090	Tabloncillo Perla	91.46	а
	M05094	Tabloncillo Perla	91.36	а
81	M05093	Tabloncillo perla	89.76	а
	M05050	Mushito	84.88	а
78	M05091	Tabloncillo	81.56	ab
50	M05080	Mushito	80.30	ab
102	INIFAP 23	Tabloncillo Perla	80.11	ab
97	INIFAP 08	Tabloncillo	76.10	bc
44	M05073	Mushito	75.36	bc
85	M05005	Tuxpeño	74.91	bc
15	M05089	Elotes Occidentales	74.39	bc
116	INIFAP 50	Elotes Occidentales	71.85	bc
95	INIFAP 05	Tabloncillo	69.56	bcd
107	INIFAP 28	Tabloncillo	69.28	bcd
79	M05092	Tabloncillo	67.72	cde
65	M05006	Tabloncillo	67.35	cde
25	M05049	Mushito	65.86	cde
101	INIFAP 22	Tabloncillo	64.91	cde
68	M05018	Tabloncillo	64.45	cde
24	M05048	Mushito	63.30	def
69	M05021	Tabloncillo	63.29	def
17	M05098	Eotero de Sinaloa	62.98	def
56	M05086	Mushito	62.78	def
105	INIFAP 26	Onaveño	62.60	def
28	M05055	Mushito	62.58	def
70	M05022	Tabloncillo	61.69	def
3	M05020	Ancho	61.53	def
103	INIFAP 24	Onaveño	61.49	def
115	INIFAP 48	Elotes Occidentales	60.95	def
96	INIFAP 07	Tabloncillo	60.09	def
1	M05002	Ancho	60.00	def
58	M05088	Mushito	59.97	def
	M05062	Mushito	59.90	def
	Tabloncillo	Tabloncillo	59.28	def
14	M05053	Elotes Occidentales	59.03	def
114	INIFAP 46	Tabloncillo	59.00	def
	INIFAP 14	Tabloncillo Perla	58.94	def
	M05008	Tuxpeño	58.66	def
	INIFAP 56	Bofo	58.63	def
43	M05072	Mushito	58.63	def

ENT	COLECTA	RAZA	% MS	
110	INIFAP 32	Tuxpeño	58.43	def
118	INIFAP 55	Tuxpeño	58.42	def
33	M05061	Mushito	58.05	def
	INIFAP 40	Elotero de Sinaloa	57.91	def
22	M05029	Jala	57.33	efg
75	M05036	Tabloncillo	57.29	efg
108	INIFAP 30	Tuxpeño	57.11	efg
63	M04001	Tabloncillo	56.76	efg
9	M05040	Celaya	55.69	efg
66	M05011	Tabloncillo	55.63	fg
48	M05078	Mushito	55.61	fg
91	M05042	Gen. Avanzadas	54.66	fg
51	M05081	Mushito	54.66	fg
113	INIFAP 42	Elotero de Sinaloa	54.08	fg
117	INIFAP 52	Elotero de Sinaloa	54.02	fg
21	M05004	Jala	53.88	fg
5	M05009	Bofo	53.72	fg
111	INIFAP 35	Tabloncillo Perla	53.67	fg
8	M05039	Celaya	53.42	fg
45	M05075	Mushito	53.39	fg
23	M05030	Jala	53.36	fg
64	M05001	Tabloncillo	53.26	fg
47	M05077	Mushito	52.23	fg
10	M05041	Celaya	51.51	fg
89	Tabloncillo RC1	Tabloncillo	50.92	gh
49	M05079	Mushito	50.74	gh
109	INIFAP 31	Tuxpeño	50.19	gh
	M05058	Mushito	50.16	gh
61	M05016	Pepitilla	49.76	gh
54	M05084	Mushito	49.40	gh
35	M05063	Mushito	48.99	gh
	INIFAP 57	Bofo	48.99	gh
4	M05099	Ancho	48.92	gh
106	INIFAP 27	Onaveño	48.84	gh
	INIFAP 25	Tabloncillo Perla	48.74	gh
19	M05017	Elotero de Sinaloa	48.70	gh
16	M05095	Elotes Occidentales	48.63	gh
7	M05045	Celaya	48.46	gh
87	M05014	Tuxpeño	48.26	gh
40	M05069	Mushito	48.14	gh
13	M05054	Elotes conicos	48.14	gh

ENT	COLECTA	RAZA	% MS	
94	M05037	Gen. Avanzadas	47.94	gh
99	INIFAP 12	Tuxpeño	47.75	gh
31	M05059	Mushito	47.63	gh
59	M05096	Mushito	47.18	gh
39	M05068	Mushito	46.69	gh
32	M05060	Mushito	45.99	gh
84	M04003	Tuxpeño	45.51	gh
90	M05043	Gen. Avanzadas	45.29	gh
12	M05051	Elotes Conicos	44.03	gh
73	M05033	Tabloncillo	43.79	hi
2	M05100	Tabloncillo Perla	43.45	hi
41	M05090	Tabloncillo Perla	43.12	hi
74	M05034	Tabloncillo	43.04	hi
93	M05032	Gen. Avanzadas	42.58	hi
55	M05085	Mushito	42.35	hi
38	M05067	Mushito	42.20	hi
27	M05052	Mushito	42.16	hi
53	M05083	Mushito	42.13	hi
98	INIFAP 11	Tuxpeño	42.07	hi
92	LUG21xLUG282		40.86	hi
76	M05044	Tabloncillo	39.38	hi
36	M05064	Mushito	39.23	hi
57	M05087	Mushito	39.13	hi
18	M05007	Elotero de Sinaloa	38.83	ij
83	M04002	Tuxpeño	38.80	ij
67	M05013	Tabloncillo	38.72	ij
6	M05015	Bofo	36.84	ij
72	M05024	Tabloncillo	36.71	ij
71	M05023	Tabloncillo	36.44	ij
20	M05003	Jala	35.51	ij
52	M05082	Mushito	35.38	ij
42	M05071	Mushito	35.31	ij
11	M05046	Dulce	34.54	ij
37	M05066	Mushito	34.11	ij
88	M05038	Tuxpeño	33.97	ij
29	M05057	Mushito	33.49	ij
77	M05056	Tabloncillo	26.56	j
60	M05097	Mushito	23.81	k
46	M05076	Mushito	22.64	k
_		DMS Tukey 0.05 =	12.07	

CUADRO A.10 VALORES DE % DE PROTEÍNA CRUDA EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

ENT	COLECTA	RAZA	% PRO	
	M05038	Tuxpeño	12.25	а
	M05087	Mushito	11.39	ab
41	M05090	Tabloncillo Perla	11.24	bc
53	M05083	Mushito	11.21	bcd
40	M05069	Mushito	11.20	bcd
84	M04003	Tuxpeño	10.65	bcd
51	M05081	Mushito	10.51	bcd
44	M05073	Mushito	10.43	cde
28	M05055	Mushito	10.38	cde
12	M05051	Elotes Conicos	10.28	def
46	M05076	Mushito	10.22	ef
29	M05057	Mushito	10.18	ef
58	M05088	Mushito	10.16	ef
52	M05082	Mushito	10.08	ef
42	M05071	Mushito	10.03	ef
36	M05064	Mushito	10.02	ef
39	M05068	Mushito	10.02	ef
11	M05046	Dulce	10.00	ef
30	M05058	Mushito	9.92	ef
109	INIFAP 31	Tuxpeño	9.79	ef
104	INIFAP 25	Tabloncillo Perla	9.70	ef
54	M05084	Mushito	9.68	ef
96	INIFAP 07	Tabloncillo	9.65	ef
75	M05036	Tabloncillo	9.62	ef
45	M05075	Mushito	9.43	fg
19	M05017	Elotero de Sinaloa	9.42	fg
103	INIFAP 24	Onaveño	9.41	fg
25	M05049	Mushito	9.29	gh
102	INIFAP 23	Tabloncillo Perla	9.26	gh
15	M05089	Elotes Occidentales	9.18	gh
55	M05085	Mushito	9.15	gh
106	INIFAP27	Onaveño	9.05	gh
100	INIFAP 14	Tabloncillo Perla	9.02	gh
22	M05029	Jala	8.99	gh
48	M05078	Mushito	8.98	gh
49	M05079	Mushito	8.97	gh
115	INIFAP 48	Elotes Occidentales	8.97	gh
27	M05052	Mushito	8.88	gh
60	M05097	Mushito	8.77	gh
89	Tablonc RC1	Tabloncillo	8.76	gh

ENT	COLECTA	RAZA	% PRO	
33		Mushito	8.71	gh
108	INIFAP 30	Tuxpeño	8.64	gh
43	M05072	Mushito	8.62	gh
99	INIFAP 12	Tuxpeño	8.62	gh
64	M05001	Tabloncillo	8.60	gh
8	M05039	Celaya	8.59	gh
34	M05062	Mushito	8.56	gh
110	INIFAP 32	Tuxpeño	8.56	gh
38	M05067	Mushito	8.54	gh
112	INIFAP 40	Elotes de Sinaloa	8.35	hij
20	M05003	Jala	8.32	ij
65	M05006	Tabloncillo	8.30	ij
32	M05060	Mushito	8.24	ij
50	M05080	Mushito	8.23	ij
97	INIFAP 08	Tabloncillo	8.23	ij
105	INIFAP 26	Onaveño	8.21	ij
69	M05021	Tabloncillo	8.18	ij
26	M05050	Mushito	8.16	ij
47	M05077	Mushito	8.13	ij
21	M05004	Jala	8.12	ij
101	INIFAP 22	Tabloncillo	8.11	ij
63	M04001	Tabloncillo	8.06	ij
74	M05034	Tabloncillo	8.04	ij
95	INIFAP 05	Tabloncillo	8.04	ij
62	Tabloncillo	Tabloncillo	8.03	ij
16	M05095	Elotes Occidentales	7.96	ij
107	INIFAP 28	Tabloncillo	7.96	ij
91	M05042	Gen. Avanzadas	7.92	ij
93	M05032	Ge. Avanzadas	7.92	ij
78	M05091	Tabloncillo	7.91	ij
79	M05092	Tabloncillo	7.91	ij
10	M05041	Celaya	7.88	ij
111	INIFAP 35	Tabloncillo Perla	7.88	ij
17	M05098	Elotero de Sinaloa	7.87	ij
77	M05056	Tabloncillo	7.84	ij
92	LUG21xLUG282		7.84	ij
117	INIFAP 52	Elotes de Sinaloa	7.83	lj
31	M05059	Mushito	7.82	ij
82	M05094	Tabloncillo Perla	7.81	ij
56	M05086	Mushito	7.78	ij
81	M05093	Tabloncillo Perla	7.74	ij
68	M05018	Tabloncillo	7.73	ij

ENT	COLECTA	RAZA	% PRO	
85	M05005	Tuxpeño	7.72	ij
35	M05063	Mushito	7.65	ij
37	′ M05066	Mushito	7.64	ij
1	M05002	Ancho	7.53	ij
113	3 INIFAP 42	Elotero de Sinaloa	7.53	ij
66	M05011	Tabloncillo	7.46	ij
23	3 M05030	Jala	7.44	ijk
2	2 M05100	Tabloncillo Perla	7.39	kl
80	M05090	Tabloncillo Perla	7.35	kl
18	3 M05007	Elotero de Sinaloa	7.32	kl
6	M05015	Bofo	7.27	kl
86	M05008	Tuxpeño	7.27	kl
ç	M05040	Celaya	7.26	kl
59	M05096	Mushito	7.25	kl
119	NIFAP 56	Bofo	7.25	kl
14	M05053	Elotes Occidentales	7.24	kl
61	M05016	Pepitilla	7.22	kl
90	M05043	Gen. Avanzadas	7.20	kl
24	M05048	Mushito	7.19	kl
13	3 M05054	Elotes Conicos	7.18	kl
118	INIFAP 55	Tuxpeño	7.18	kl
87	′ M05014	Tuxpeño	7.15	kl
114	INIFAP 46	Tabloncillo	7.12	kl
116	NIFAP 50	Elotes Occidentales	7.11	kl
۷	M05099	Ancho	7.08	kl
5	M05009	Bofo	7.08	kl
120	NIFAP 57	Bofo	6.98	kl
7	′ M05045	Celaya	6.96	kl
94	M05037	Gen. Avanzadas	6.93	kl
71	M05023	Tabloncillo	6.83	kl
72	2 M05024	Tabloncillo	6.69	kl
73	3 M05033	Tabloncillo	6.69	kl
3	3 M05020	Ancho	6.64	kl
98	3 INIFAP 11	Tuxpeño	5.99	lm
83	3 M04002	Tuxpeño	5.98	lm
70	M05022	Tabloncillo	5.92	lm
67	′ M05013	Tabloncillo	5.74	m
76	M05044	Tabloncillo	5.21	m
_		DMS Tukey 0.05=	0.9342	

CUADRO A.11 VALORES DE % FIBRA DETERGENTE NEUTRO EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

ENT	COLECTA	RAZA	% FDN	
49	M05079	Mushito	64.61	а
41	M05090	Tabloncillo Perla	64.07	ab
40	M05069	Mushito	62.65	abc
80	M05090	Tabloncillo Perla	61.89	abc
30	M05058	Mushito	61.46	bcd
82	M05094	Tabloncillo Perla	61.38	bcde
65	M05006	Tabloncillo	60.31	cde
69	M05021	Tabloncillo	60.28	cde
9	M05040	Celaya	59.98	cde
12	M05051	Elotes Conicos	59.88	cde
37	M05066	Mushito	59.84	cde
83	M04002	Tuxpeño	59.69	cde
46	M05076	Mushito	59.54	def
32	M05060	Mushito	58.63	def
38	M05067	Mushito	58.57	def
42	M05071	Mushito	58.31	efg
84	M04003	Tuxpeño	58.30	efg
58	M05088	Mushito	58.04	efg
68	M05018	Tabloncillo	58.04	efg
44	M05073	Mushito	57.92	efg
112	INIFAP 40	Elotero de Sinaloa	57.79	efg
88	M05038	Tuxpeño	57.70	efg
104	INIFAP 25	Tabloncillo Perla	57.45	efg
35	M05063	Mushito	57.13	fg
33	M05061	Mushito	57.09	fg
18	M05007	Elotero de Sinaloa	56.96	fg
60	M05097	Mushito	56.75	fg
106	INIFAP27	Onaveño	56.53	fg
76	M05044	Tabloncillo	56.33	gh
48	M05078	Mushito	55.95	gh
115	INIFAP 48	Elotes Occidentales	55.86	gh
77	M05056	Tabloncillo	55.67	gh
6	M05015	Bofo	55.66	gh
110	INIFAP 32	Tuxpeño	54.67	gh
86	M05008	Tuxpeño	54.56	gh
13	M05054	Elotes Conicos	54.45	gh
117	INIFAP 52	Elotero de Sinaloa	54.42	gh
36	M05064	Mushito	54.28	hi
11	M05046	Dulce	54.01	hi
45	M05075	Mushito	53.82	hi

ENT	COLECTA	RAZA	% FDN	
57	M05087	Mushito	53.78	hi
53	M05083	Mushito	53.77	hi
31	M05059	Mushito	53.74	hi
108	INIFAP 30	Tuxpeño	53.70	hi
70	M05022	Tabloncillo	53.63	hi
47	M05077	Mushito	53.53	hi
59	M05096	Mushito	53.18	ij
102	INIFAP 23	Tabloncillo Perla	53.13	ij
85	M05005	Tuxpeño	52.63	ij
111	INIFAP 35	Tabloncillo Perla	52.62	ij
28	M05055	Mushito	52.34	ij
116	INIFAP 50	Elotes Occidentales	52.17	ij
20	M05003	Jala	51.92	ij
107	INIFAP 28	Tabloncillo	51.78	ij
97	INIFAP 08	Tabloncillo	51.77	ij
103	INIFAP 24	Onaveño	51.62	ij
64	M05001	Tabloncillo	51.38	ij
89	Tabloncillo RC1	Tabloncillo	51.35	ij
87	M05014	Tuxpeño	51.31	ij
67	M05013	Tabloncillo	51.10	ijk
109	INIFAP 31	Tuxpeño	51.00	jk
94	M05037	Gen. Avanzadas	50.79	jk
120	INIFAP 57	Bofo	50.78	jk
55	M05085	Mushito	50.70	jk
22	M05029	Jala	50.67	jk
51	M05081	Mushito	50.67	jk
56	M05086	Mushito	50.65	jk
66	M05011	Tabloncillo	50.64	jk
23	M05030	Jala	50.45	jk
90	M05043	Gen. Avanzadas	49.81	kl
118	INIFAP 55	Tuxpeño	49.78	kl
50	M05080	Mushito	49.49	kl
54	M05084	Mushito	49.49	kl
19	M05017	Elotero de Sinaloa	49.34	kl
29	M05057	Mushito	49.00	kl
8	M05039	Celaya	48.78	kl
71	M05023	Tabloncillo	48.78	kl
34	M05062	Mushito	48.58	kl
16	M05095	Elotes Occidentales	48.40	kl
2	M05100	Tabloncillo Perla	48.38	kl
73	M05033	Tabloncillo	48.34	KI

ENT	COLECTA	RAZA	% FDN	-
	7 M05045	Celaya	48.25	kl
52	2 M05082	Mushito	48.24	kl
101	I INIFAP 22	Tabloncillo	47.96	lm
119	NIFAP 56	Bofo	47.95	lm
98	3 INIFAP 11	Tuxpeño	47.91	lm
99	NIFAP 12	Tuxpeño	47.90	lm
63	3 M04001	Tabloncillo	47.85	lm
26	6 M05050	Mushito	47.82	lm
95	5 INIFAP 05	Tabloncillo	47.75	lm
3	3 M05020	Ancho	47.64	lm
93	3 M05032	Gen. Avanzadas	47.54	lm
72	2 M05024	Tabloncillo	46.80	lm
75	M05036	Tabloncillo	46.66	mn
į	M05009	Bofo	46.46	mn
6′	M05016	Pepitilla	46.45	mn
2	M05004	Jala	46.39	mn
79	M05092	Tabloncillo	46.23	mn
78	3 M05091	Tabloncillo	46.03	mn
92	LUG21xLUG282		45.94	mn
4	M05099	Ancho	45.85	mn
74	1 M05034	Tabloncillo	45.18	mn
113	3 INIFAP 42	Elotero de Sinaloa	45.08	mn
10) M05041	Celaya	45.00	mn
96	S INIFAP 07	Tabloncillo	43.89	nñ
62	2 Tabloncillo	Tabloncillo	43.75	nñ
114	INIFAP 46	Tabloncillo	43.60	ño
43	3 M05072	Mushito	43.33	ño
100	NIFAP 14	Tabloncillo Perla	43.31	ño
39	M05068	Mushito	43.25	ño
15	M05089	Elotes Occidentales	42.33	ño
25	M05049	Mushito	42.28	ño
24	1 M05048	Mushito	42.10	ño
105	5 INIFAP 26	Onaveño	41.74	ño
•	M05002	Ancho	41.45	ño
17	7 M05098	Elotero de Sinaloa	40.51	ор
9	M05042	Gen. Avanzadas	39.35	op
14	M05053	Elotes Occidentales	38.73	op
8	M05093	Tabloncillo Perla	37.05	q
27	7 M05052	Mushito	33.93	q
		DMS Tukey 0.05 =	3.0232	

CUADRO A.12 VALORES DE % FIBRA DETERGENTE ÁCIDO EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

ENT	COLECTA	RAZA	% FDA	
41	M05090	Tabloncillo Perla	43.48	а
49	M05079	Mushito	42.73	ab
30	M05058	Mushito	40.56	abc
82	M05094	Tabloncillo Perla	40.00	bc
40	M05069	Mushito	39.79	С
9	M05040	Celaya	38.23	С
80	M05090	Tabloncillo Perla	38.07	С
104	INIFAP 25	Tabloncillo Perla	37.80	С
12	M05051	Elotes Cónicos	37.77	С
106	INIFAP27	Onaveño	37.56	С
38	M05067	Mushito	37.42	cd
32	M05060	Mushito	37.22	d
	M04002	Tuxpeño	37.10	d
112		Elotero Sinaloa	36.91	d
46	M05076	Mushito	36.85	d
84		Tuxpeño	36.80	d
44	M05073	Mushito	36.76	d
115		Elotes Occidentales	36.70	d
117	INIFAP 52	Eloter Sinaloa	36.69	d
	M05066	Mushito	36.66	d
110		Tuxpeño	36.29	d
68	M05018	Tabloncillo	36.23	d
88	M05038	Tuxpeño	36.13	d
48		Mushito	36.13	d
86		Tuxpeño	35.63	d
85		Tuxpeño	35.37	d
76		Tabloncillo	35.23	d
102		Tabloncillo Perla	35.19	d
	M05063	Mushito	35.14	d
69		Tabloncillo	35.02	d
60		Mushito	34.89	d
	M05022	Tabloncillo	34.87	d
	M05071	Mushito	34.87	d
	INIFAP 31	Tuxpeño	34.85	d
_	INIFAP 28	Tabloncillo	34.80	d
	M05015	Bofo	34.75	de
	M05061	Mushito	34.56	е
	M05088	Mushito	34.33	е
	INIFAP 50	Elotes Occidentales	34.15	е
	M05054	Elotes Cónicos	34.01	е
	INIFAP 30	Tuxpeño	33.94	е
	M05014	Tuxpeño	33.90	е
11	M05046	Dulce	33.85	е

ENT	444	COLECTA	RAZA	%FDA	
	111	INIFAP 35	Tabloncillo Perla	33.82	е
		M05064	Mushito	33.77	е
		M05044	Tabloncillo	33.50	е
		INIFAP 08	Tabloncillo	33.41	е
			Tuxpeño	33.11	е
		INIFAP 24	Onaveño Mushita	33.07	е
		M05083	Mushito	32.79	е
	47	M05077	Mushito	32.75	е
	31	M05059	Mushito	32.63	е
		M05003	Jala Mushita	32.61	е
		M05075	Mushito	32.55	е
		M05013	Tabloncillo Elotero Sinaloa	32.35	е
		M05007		32.34	е
		M05086	Mushito	32.26	е
	19	M05017	Elotero Sinaloa	32.21	e
		M05001	Tabloncillo Mushita	32.09	ef
		M05087	Mushito	32.03	f f
	120	INIFAP 57	Bofo	31.90	
		M05096	Mushito	31.62	f
		INIFAP 26	Onaveño	31.04	f f
	8	M05039	Celaya	30.91	
	28	M05055	Mushito	30.67	f
	7 90	M05045	Celaya Gen. Avanzada	30.59	f f
		M05043		30.55	f
		M05062	Mushito Mushito	30.54 30.34	f
		M05057 M05080	Mushito	30.34	f
	89	TABLO RC1	Tabloncillo	30.33	f
		M05037	Gen. Avanzada	30.24	f
		M05037	Jala	30.18	f
		M05095	Elotes Occidentales	30.15	f
		M05093 M05029	Jala	29.97	f
		M05029	Ancho	29.95	f
		M05084	Mushito	29.86	f
		M05100	Tabloncillo Perla	29.84	f
		M05006	Tabloncillo Tabloncillo	29.74	f
		M05085	Mushito	29.72	f
	98	INIFAP 11	Тихреñо	29.72	f
	101	INIFAP 22	Tabloncillo	29.66	fg
		INIFAP 12	Тихреñо	29.31	
		M05009	Bofo	29.24	g g
		M05011	Tabloncillo	29.24	g g
		M05081	Mushito	29.16	
		M05032	Gen. Avanzada	29.08	g g
	61	M05016	Pepitilla	29.00	g g
		M05033	Tabloncillo	28.92	g g
	, 0	55555	, adionomo	_0.02	ອ

ENT	COLECTA	RAZA	% FDA			
	M05082	Mushito	28.74			
	M05050	Mushito	28.74	g		
20 4		Ancho		g		
78		Tabloncillo	28.69 28.56	g		
	M04001	Tabloncillo Tabloncillo	28.52	g		
		Tabloncillo Tabloncillo	28.40	g		
	M05023			g		
95	INIFAP 05	Tabloncillo	28.20	g		
113		Elotero Sinaloa	27.91	g		
	INIFAP 56	Bofo	27.88	g		
	INIFAP 46	Tabloncillo	27.87	g		
	M05024	Tabloncillo	27.77	g		
21	M05004	Jala	27.72	g		
75 M05036		Tabloncillo	27.35	g		
96 INIFAP 07		Tabloncillo	27.25	g		
100 INIFAP 14		Tabloncillo Perla	27.24	g		
25 M05049		Mushito	26.62	g		
10	M05041	Celaya	26.62	g		
15	M05089	Elotes Occidentales	26.36	gh		
79	M05092	Tabloncillo	26.16	h		
39	M05068	Mushito	26.09	h		
74	M05034	Tabloncillo	26.00	h		
43	M05072	Mushito	25.92	h		
1	M05002	Ancho	25.84	h		
17	M05098	Elotero Sinaloa	25.05	h		
62	Tabloncillo	Tabloncillo	24.90	h		
24	M05048	Mushito	24.88	h		
14	M05053	Elotes Occidentales	24.53	h		
91	M05042	Gen. Avanzada	24.12	h		
92	LUG21xLUG282		28.39	h		
81	M05093	Tabloncillo Perla	23.57	h		
27	M05052	Mushito	23.48	h		
DMS Tukey 0.05 = 2.7441						

CUADRO A.13 VALORES DE % DE LIGNINA EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

ENT	COLECTA	RAZA	% LIG	
-	M05079	Mushito	36.54	a
41	M05079	Tabloncillo Perla	36.43	ab
	M05069	Mushito	34.18	abcd
	M05090	Tabloncillo Perla	34.10	abcd
	M05040	Celaya	33.57	cde
	M05058	Mushito	33.47	cde
	M05094	Tabloncillo Perla	32.98	cde
	M05006	Tabloncillo	32.82	cde
	M05021	Tabloncillo	32.75	cde
	M05051	Elotes Conicos	32.16	cde
	M05066	Mushito	32.04	cde
	M04002	Tuxpeño	31.68	de
	M05076	Mushito	31.65	de
	M05060	Mushito	31.58	de
	M05067	Mushito	31.40	ef
	M05071	Mushito	31.17	ef
	M04003	Tuxpeño	31.08	ef
	M05088	Mushito	30.95	ef
	M05018	Tabloncillo	30.90	fg
44	M05073	Mushito	30.72	fg
112	INIFAP 40	Elotero de Sinaloa	30.51	fg
88	M05038	Tuxpeño	30.25	fg
104	INIFAP 25	Tabloncillo Perla	30.25	fg
35	M05063	Mushito	30.21	fg
33	M05061	Mushito	30.13	fg
18	M05007	Elotero Sinaloa	30.06	fg
60	M05097	Mushito	29.99	fg
106	INIFAP27	Onaveño	29.93	fg
76	M05044	Tabloncillo	29.92	fg
48	M05078	Mushito	29.83	fg
115	INIFAP 48	Elotes Onaveño	29.78	fg
	M05056	Tabloncillo	29.77	fg
	M05015	Bofo	29.70	fg
	M05008	Tuxpeño	29.31	fg
	INIFAP 32	Tuxpeño	29.31	fg
	M05054	Elotes Conicos	29.27	fg
	INIFAP 52	Elotes Sinaloa	28.97	fg
	M05064	Mushito	28.55	
	M05046	Dulces	28.44	g
45	M05075	Mushito	28.29	g

ENIT	COLECTA	D A 7 A	0/ 1 10	
ENT	COLECTA	RAZA	% LIG	
57	M05087	Mushito	27.89	g b :
31	M05059	Mushito	27.86	hi b:
53	M05083	Mushito	27.86	hi b:
	INIFAP 30	Tuxpeño	27.82	hi b:
70	M05022	Tabloncillo	27.78	hi '-
47	M05077	Mushito	27.76	hi '-
59	M05096	Mushito	27.74	hi '-
_	INIFAP 23	Taloncillo Perla	27.66	hi
	M05005	Tuxpeño	27.59	hi
111	INIFAP 35	Tabloncillo Perla	27.38	hi
28	M05055	Mushito	27.31	hi
	INIFAP 50	Elotes Onaveño	27.22	hi
20	M05003	Jala 	27.21	hi
	INIFAP 28	Tabloncillo	27.21	hi
	INIFAP 08	Tabloncillo	27.16	hi
	INIFAP 24	Onaveño	27.01	hi
64 M05001		Tabloncillo	26.99	hi
	Tabloncill0 RC1	Tabloncillo	26.94	hi
87	M05014	Tuxpeño	26.89	hi
	M05013	Tabloncillo	26.79	hi
	INIFAP 31	Tuxpeño	26.78	hi
	M05037	Gen. Avanzadas	26.71	hi
120	INIFAP 57	Bofo	26.52	hi
	M05085	35 Mushito		hi
22	M05029	Jala	26.23	hi
51	M05081	Mushito	25.69	hi
56	M05086	Mushito	25.69	ij
66	M05011	Tabloncillo	25.68	ij
23	M05030	Jala	25.57	ij
	M05043	Gen. Avanzadas	25.49	ij
118	INIFAP 55	Tuxpeño	25.47	ij
50	M05080	Mushito	25.44	ij
54	M05084	Mushito	25.27	ij
19	M05017	Elotero de Sinaloa	25.24	ij
29	M05057	Mushito	24.92	ij
8	M05039	Celaya	24.71	jk
71	M05023	Tabloncillo	24.66	jk
34	M05062	Mushito	24.63	jk
16	M05095	Elotes Occidentales	24.59	jk
2	M05100	Tabloncillo Perla	24.56	jk
75	M05033	Tabloncillo	24.49	jk

ENT	COLECTA	RAZA	% LIG	
7	M05045	Celaya	24.33	jk
52	M05082	Mushito	24.30	jk
101	INIFAP 22	Tabloncillo	24.28	jk
119	INIFAP 56	Bofo	24.23	jk
98	INIFAP 11	Tuxpeño	24.17	jk
99	INIFAP 12	Tuxpeño	23.79	jk
63	M04001	Tabloncillo	23.74	jk
26	M05050	Mushito	23.71	jk
95	INIFAP 05	Tabloncillo	23.52	jk
3	M05020	Ancho	23.44	jk
93	M05032	Gen. Avanzadas	23.40	kl
72	M05024	Tabloncillo	23.36	kl
75	M05036	Tabloncillo	23.36	kl
5	M05009	Bofo	23.34	kl
61	M05016	Pepitilla	23.19	kl
21	M05004	Jala	23.09	kl
78	M05091	Tabloncillo	23.02	kl
79	M05092	Tabloncillo	23.02	kl
92	LUG21xLUG282		23.00	kl
4	M05099	Ancho	22.97	kl
74	M05034	Tabloncillo	22.77	kl
113	INIFAP 42	ELotero de Sinaloa	22.58	kl
10	M05041	Celaya	22.47	kl
96	INIFAP 07	Tabloncillo	22.47	kl
62	Tabloncillo	Tabloncillo	22.44	kl
114	INIFAP 46	Tabloncillo	22.15	kl
43	M05072	Mushito	22.10	lmno
100	INIFAP 14	Tabloncillo Perla	21.98	lmno
39	M05068	Mushito	21.88	lmno
15	M05089	Elotes Occidentales	21.85	lmno
25	M05049	Mushito	21.51	lmno
24	M05048	Mushito	21.46	lmno
105	INIFAP 26	Onaveño	21.31	lmno
1	M05002	Ancho	21.27	lmno
17	M05098	Elotes de Sinaloa	19.99	lmno
91	M05042	Gen. Avanzadas	19.63	mno
14	M05053	Elotes Occidentales	19.60	mno
81	M05093	Tabloncillo Perla	19.34	mn
27	M05052	Mushito	19.28	mn
		DMS Tukey 0.05 =	2.6442	

CUADRO A.14 VALORES DE % DE DIGESTIBILIDAD *IN VITRO* EN 120 COLECTAS DE MAÍCES NATIVOS DE OCCIDENTE.

ENT	COLECTA	RAZA	% DIV	
4	M05099	Ancho	83.76	а
108	INIFAP 30	Tuxpeño	79.59	ab
52	M05082	Mushito	79.05	abc
72	M05024	Tabloncillo	77.69	abcd
1	M05002	Ancho	77.16	abcd
71	M05023	Tabloncillo	76.50	abcd
51	M05081	Mushito	75.98	abcd
14	M05053	Elotes Occidentales	75.46	abcd
62	Tabloncillo	Tabloncillo	75.44	abcd
43	M05072	Mushito	75.28	abcd
47	M05077	Mushito	74.46	bcd
5	M05009	Bofo	74.30	bcd
56	M05086	Mushito	74.23	bcd
3	M05020	Ancho	73.92	bcd
58	M05088	Mushito	73.91	bcd
17	M05098	Elotero de Sinaloa	73.90	bcd
93	M05032	Gen. Avanzadas	73.57	bcd
7	M05045	Celaya	73.29	bcd
10	M05041	Celaya	73.16	bcd
11	M05046	Dulce	73.13	bcd
61	M05016	Pepitilla	73.11	bcd
75	M05036	Tabloncillo	72.71	bcd
119	INIFAP 56	Bofo	72.33	bcd
95	INIFAP 05	Tabloncillo	72.20	bcd
99	INIFAP 12	Tuxpeño	72.13	bcd
81	M05093	Tabloncillo Perla	72.02	bcd
66	M05011	Tabloncillo	71.94	bcd
98	INIFAP 11	Tuxpeño	71.84	bcd
8	M05039	Celaya	71.66	bcd
39	M05068	Mushito	71.12	bcd
92	LUG21xLUG282		70.90	bcd
13	M05054	Elotes Cónicos	70.77	cd
55	M05085	Mushito	70.68	cd
91	M05042	Gen. Avanzadas	70.66	cd
77	M05044	Tabloncillo	70.61	cd
69	M05021	Tabloncillo	70.50	cd
	M05080	Mushito	70.49	cd
46	M05076	Mushito	70.04	cd
	M05097	Mushito	69.96	cd
9	M05040	Celaya	69.67	de

ENT	COLECTA	RAZA	% DIV	
	M05061	Mushito	69.63	de
120	INIFAP 57	Bofo	69.61	de
23	M05030	Jala	69.59	de
89	TABLO RC1	Tabloncillo	69.57	de
38	M05067	Mushito	69.36	def
44	M05073	Mushito	69.21	def
15	M05089	Elotes Occidentales	69.13	def
53	M05083	Mushito	68.55	def
54	M05084	Mushito	68.41	def
67	M05013	Tabloncillo	68.22	def
57	M05087	Mushito	68.17	def
31	M05059	Mushito	67.98	def
65	M05006	Tabloncillo	67.91	def
35	M05063	Mushito	67.77	def
59	M05096	Mushito	67.56	def
45	M05075	Mushito	67.49	def
96	INIFAP 07	Tabloncillo	67.39	def
101	INIFAP 22	Tabloncillo	67.34	def
21	M05004	Jala	67.01	def
27	M05052	Mushito	67.00	def
28	M05055	Mushito	66.88	def
12	M05051	Elotes Cónicos	66.76	def
48	M05078	Mushito	66.75	def
26	M05050	Mushito	66.61	def
105	INIFAP 26	Onaveño	66.21	def
113	INIFAP 42	Elotero de Sinaloa	66.10	def
41	M05090	Tabloncillo Perla	66.06	def
34	M05062	Mushito	66.03	def
30	M05058	Mushito	66.01	def
20	M05003	Jala	65.90	def
79	M05092	Tabloncillo	65.74	def
29	M05057	Mushito	65.70	def
88	M05038	Tuxpeño	65.45	def
42	M05071	Mushito	65.37	def
64	M05001	Tabloncillo	65.32	def
32	M05060	Mushito	65.31	def
6	M05015	Bofo	65.12	def
40	M05069	Mushito	64.81	def
87	M05014	Tuxpeño	64.72	def
73	M05033	Tabloncillo	64.70	def
25	M05049	Mushito	64.58	def
97	INIFAP 08	Tabloncillo	64.43	def

ENT	COLECTA	RAZA	DIV	def
19	M05017	Elotero de Sinaloa	64.39	def
118	INIFAP 55	Tuxpeño	63.99	def
116	INIFAP 50	Elotes Occidentales	63.88	def
76	M05044	Tabloncillo	63.81	def
114	INIFAP 46	Tabloncillo	63.24	def
78	M05056	Tabloncillo	63.20	def
16	M05095	Elotes Occidentales	63.06	def
24	M05048	Mushito	63.05	def
103	INIFAP 24	Onaveño	62.75	def
110	INIFAP 32	Tuxpeño	62.45	def
36	M05064	Mushito	62.25	def
49	M05079	Mushito	62.21	def
63	M04001	Tabloncillo	62.16	def
104	INIFAP 25	Tab Perla	61.52	def
111	INIFAP 35	Tab Perla	60.99	def
85	M05005	Tuxpeño	60.92	def
70	M05022	Tabloncillo	60.82	def
84	M04003	Tuxpeño	60.73	def
117	INIFAP 52	Elotero de Sinaloa	60.18	def
82	M05094	Tabloncillo Perla	59.94	def
115	INIFAP 48	Elotes Occidentales	59.44	def
112	INIFAP 40	Elotero de Sinaloa	57.88	def
86	M05008	Tuxpeño	57.52	def
74	M05034	Tabloncillo	57.40	defg
109	INIFAP 31	Tuxpeño	56.61	defg
83	M04002	Tuxpeño	56.05	defg
94	M05037	Gen. Avanzadas	54.68	defg
80	M05090	Tabloncillo Perla	54.37	defg
106	INIFAP27	Onaveño	54.22	defg
107	INIFAP 28	Tabloncillo	54.22	defg
102	INIFAP 23	Tabloncillo Perla	54.03	defg
68	M05018	Tabloncillo	53.83	defg
2	M05100	Tabloncillo Perla	52.95	defg
90	M05043	Gen. Avanzadas	52.36	defg
18	M05007	Elotero de Sinaloa	47.85	defg
22	M05029	Jala	47.02	defg
100	INIFAP 14	Tabloncillo Perla	43.06	defg
37	M05066	Mushito	36.90	defg
		DMS Tukey 0.05 =	8.6098	

CUADRO A.15. RESULTADO DEL ANÁLISIS DE SIETE CARACTERÍSTICAS DE CALIDAD DEL FORRAJE EN 120 MAÍCES DE OCCIDENTE.

ENIT	001 5074	D 4 7 4	ENIO	0/140	0/ DDO	0/EDN	0/ 50 4	0/1.10	0/ DIV/
-	COLECTA	RAZA	ENG	%MS	%PRO	%FDN	%FDA	%LIG	%DIV
	M05002	Ancho	1.229	60.00	7.53	41.45	25.84	21.27	77.16
	M05100	Tab. Perla	0.526	43.45	7.39	48.38	29.84	24.56	52.95
	M05020	Ancho	1.135	61.53	6.64	47.64	29.95	23.44	73.92
	M05099	Ancho	1.421	48.92	7.08	45.85	28.69	22.97	83.76
5	M05009	Bofo	1.146	53.72	7.08	46.46	29.24	23.34	74.30
6	M05015	Bofo	0.879	36.84	7.27	55.66	34.75	29.7	65.12
7	M05045	Celaya	1.117	48.46	6.96	48.25	30.59	24.33	73.29
8	M05039	Celaya	1.069	53.42	8.59	48.78	30.91	24.71	71.66
9	M05040	Celaya	1.012	55.69	7.26	59.98	38.23	33.57	69.67
10	M05041	Celaya	1.113	51.51	7.88	45.00	26.62	22.47	73.16
11	M05046	Dulce	1.112	34.54	10.00	54.01	33.85	28.44	73.13
12	M05051	ELC	0.927	44.03	10.28	59.88	37.77	32.16	66.76
13	M05054	ELC	1.043	48.14	7.18	54.45	34.01	29.27	70.77
14	M05053	ELO	1.180	59.03	7.24	38.73	24.53	19.6	75.46
15	M05089	ELO	0.996	74.39	9.18	42.33	26.36	21.85	69.13
16	M05095	ELO	0.820	48.63	7.96	48.40	30.15	24.59	63.06
17	M05098	ELO	1.135	62.98	7.87	40.51	25.05	19.99	73.90
18	M05007	ELS	0.378	38.83	7.32	56.96	32.34	30.06	47.85
19	M05017	ELS	0.858	48.70	9.42	49.34	32.21	25.24	64.39
20	M05003	Jala	0.902	35.51	8.32	51.92	32.61	27.21	65.90
21	M05004	Jala	0.934	53.88	8.12	46.39	27.72	23.09	67.01
22	M05029	Jala	0.354	57.33	8.99	50.67	29.97	26.23	47.02
23	M05030	Jala	1.009	53.36	7.44	50.45	30.18	25.57	69.59
24	M05048	Mushito	0.820	63.30	7.19	42.10	24.88	21.46	63.05
25	M05049	Mushito	0.864	65.86	9.29	42.28	26.62	21.51	64.58
26	M05050	Mushito	0.923	84.88	8.16	47.82	28.71	23.71	66.61
27	M05052	Mushito	0.934	42.16	8.88	33.93	23.48	19.28	67.00
28	M05055	Mushito	0.931	62.58	10.38	52.34	30.67	27.31	66.88
29	M05057	Mushito	0.896	33.49	10.18	49.00	30.34	24.92	65.70
30	M05058	Mushito	0.905	50.16	9.92	61.46	40.56	33.47	66.01
31	M05059	Mushito	0.962	47.63	7.82	53.74	32.63	27.86	67.98
32	M05060	Mushito	0.885	45.99	8.24	58.63	37.22	31.58	65.31
33	M05061	Mushito	1.011	58.05	8.71	57.09	34.56	30.13	69.63
34	M05062	Mushito	0.906	59.90	8.56	48.58	30.54	24.63	66.03
35	M05063	Mushito	0.956	48.99	7.65	57.13	35.14	30.21	67.77
36	M05064	Mushito	0.796	39.23	10.02	54.28	33.77	28.55	62.25
37	M05066	Mushito	0.060	34.11	7.64	59.84	36.66	32.04	36.90
38	M05067	Mushito	1.003	42.2	8.54	58.57	37.42	31.4	69.36
39	M05068	Mushito	1.054	46.69	10.02	43.25	26.09	21.88	71.12
40	M05069	Mushito	0.870	48.14	11.20	62.65	39.79	34.18	64.81

ENT	COLECTA	RAZA	ENG	%MS	%PRO	%FDN	%FDA	%LIG	%DIV
41	M05090	Taploncillo	0.907	43.12	11.24	64.07	43.48	36.43	66.06
42	M05071	Mushito	0.887	35.31	10.03	58.31	34.87	31.17	65.37
43	M05072	Mushito	1.174	58.63	8.62	43.33	25.92	22.1	75.28
44	M05073	Mushito	0.998	75.36	10.43	57.92	36.76	30.72	69.21
45	M05075	Mushito	0.948	53.39	9.43	53.82	32.55	28.29	67.49
46	M05076	Mushitto	1.022	22.64	10.22	59.54	36.85	31.65	70.04
47	M05077	Mushito	1.151	52.23	8.13	53.53	32.75	27.76	74.46
48	M05078	Mushito	0.927	55.61	8.98	55.95	36.13	29.83	66.75
49	M05079	Mushito	0.795	50.74	8.97	64.61	42.73	36.54	62.21
50	M05080	Mushito	1.035	80.30	8.23	49.49	30.33	25.44	70.49
51	M05081	Mushito	1.195	54.66	10.51	50.67	29.16	25.69	75.98
52	M05082	Mushito	1.284	35.38	10.08	48.24	28.74	24.3	79.05
53	M05083	Mushito	0.979	42.13	11.21	53.77	32.79	27.86	68.55
54	M05084	Mushito	0.975	49.40	9.68	49.49	29.86	25.27	68.41
55	M05085	Mushito	1.041	42.35	9.15	50.70	29.72	26.3	70.68
56	M05086	Mushito	1.144	62.78	7.78	50.65	32.26	25.69	74.23
57	M05087	Mushito	0.968	39.13	11.39	53.78	32.03	27.89	68.17
58	M05088	Mushito	1.135	59.97	10.16	58.04	34.33	30.95	73.91
59	M05096	Mushito	0.950	47.18	7.25	53.18	31.62	27.74	67.56
60	M05097	Mushito	1.020	23.81	8.77	56.75	34.89	29.99	69.96
61	M05016	Pepitilla	1.112	49.76	7.22	46.45	29.00	23.19	73.11
62	Tabloncillo	Tabloncillo	1.179	59.28	8.03	43.75	24.90	22.44	75.44
63	M04001	Tabloncillo	0.793	56.76	8.06	47.85	28.52	23.74	62.16
64	M05001	Tabloncillo	0.885	53.26	8.60	51.38	32.09	26.99	65.32
65	M05006	Tabloncillo	0.960	67.35	8.30	60.31	29.74	32.82	67.91
66	M05011	Tabloncillo	1.077	55.63	7.46	50.64	29.24	25.68	71.94
67	M05013	Tabloncillo	0.970	38.72	5.74	51.10	32.35	26.79	68.22
68	M05018	Tabloncillo	0.552	64.45	7.73	58.04	36.23	30.9	53.83
69	M05021	Tabloncillo	1.036	63.29	8.18	60.28	35.02	32.75	70.50
70	M05022	Tabloncillo	0.755	61.69	5.92	53.63	34.87	27.78	60.82
71	M05023	Tabloncillo	1.210	36.44	6.83	48.78	28.4	24.66	76.50
72	M05024	Tabloncillo	1.244	36.71	6.69	46.8	27.77	23.36	77.69
73	M05033	Tabloncillo	0.867	43.79	6.69	48.34	28.92	24.49	64.70
74	M05034	Tabloncillo		43.04	8.04	45.18	26.00	22.77	57.40
75	M05036	Tabloncillo		57.29	9.62	46.66	27.35	23.36	72.71
76	M05044	Tabloncillo	0.841	39.38	5.21	56.33	35.23	29.92	63.81
77	M05056	Tabloncillo	1.039	26.56	7.84	55.67	33.5	29.77	70.61
78	M05091	Tabloncillo	0.824	81.56	7.91	46.03	28.56	23.02	63.20
	M05092	Tabloncillo	0.897	67.72	7.91	46.23	26.16	23.02	65.74
80	M05090	Tab. Perla	0.567	91.46	7.35	61.89	38.07	34.1	54.37
81	M05093	Tab. Perla	1.080	89.76	7.74	37.05	23.57	19.34	72.02

ENT	COLECTA	RAZA	ENG	%MS	%PRO	%FDN	%FDA	%LIG	%DIV
82	M05094	Tab. Perla	0.792	91.36	7.81	61.38	40.00	32.98	59.94
84	M04003	Tuxpeño	0.752	45.51	10.65	58.30	36.80	31.08	60.73
85	M05005	Tuxpeño	0.758	74.91	7.72	52.63	35.37	27.59	60.92
86	M05008	Tuxpeño	0.657	58.66	7.27	54.56	35.63	29.31	57.52
87	M05014	Tuxpeño	0.868	48.26	7.15	51.31	33.90	26.89	64.72
88	M05038	Tuxpeño	0.889	33.97	12.25	57.7	36.13	30.25	65.45
89	Tablnc. RC1	Tabloncillo	1.009	50.92	8.76	51.35	30.24	26.94	69.57
90	M05043	Gen. Avan	0.509	45.29	7.20	49.81	30.55	25.49	52.36
91	M05042	Gen. Avan	1.040	54.66	7.92	39.35	24.12	19.63	70.66
92	LUG21xLUG282	2	1.074	40.86	7.84	45.94	28.39	23.00	70.90
93	M05032	Gen. Avan	1.125	42.58	7.92	47.54	29.08	23.4	73.57
94	M05037	Gen. Avan	0.576	47.94	6.93	50.79	30.19	26.71	54.68
95	INIFAP 05	Tabloncillo	1.085	69.56	8.04	47.75	28.20	23.52	72.2
96	INIFAP 07	Tabloncillo	0.945	60.09	9.65	43.89	27.25	22.47	67.39
97	INIFAP 08	Tabloncillo	0.859	76.10	8.23	51.77	33.41	27.16	64.43
98	INIFAP 11	Tuxpeño	1.075	42.07	5.99	47.91	29.72	24.17	71.84
99	INIFAP 12	Tuxpeño	1.083	47.75	8.62	47.9	29.31	23.79	72.13
100	INIFAP 14	Tab Perla	0.239	58.94	9.02	43.31	27.24	21.98	43.06
101	INIFAP 22	Tabloncillo	0.944	64.91	8.11	47.96	29.66	24.28	67.34
102	INIFAP 23	Tab Perla	0.558	80.11	9.26	53.13	35.19	27.66	54.03
103	INIFAP 24	Onaveño	0.811	61.49	9.41	51.62	33.07	27.01	62.75
104	INIFAP 25	Tab Perla	0.775	48.74	9.70	57.45	37.8	30.25	61.52
105	INIFAP 26	Onaveño	0.911	62.60	8.21	41.74	31.04	21.31	66.21
106	INIFAP27	Onaveño	0.563	48.84	9.05	56.53	37.56	29.93	54.22
107	INIFAP 28	Tabloncillo	0.563	69.28	7.96	51.78	34.80	27.21	54.22
108	INIFAP 30	Tuxpeño	1.300	57.11	8.64	53.70	33.94	27.82	79.59
109	INIFAP 31	Tuxpeño	0.632	50.19	9.79	51.00	34.85	26.78	56.61
110	INIFAP 32	Tuxpeño	0.802	58.43	8.56	54.67	36.29	29.31	62.45
111	INIFAP 35	Tab Perla	0.760	53.67	7.88	52.62	33.82	27.38	60.99
112	INIFAP 40	ELS	0.669	57.91	8.35	57.79	36.91	30.51	57.88
113	INIFAP 42	ELS	0.908	54.08	7.53	45.08	27.91	22.58	66.10
114	INIFAP 46	Tabloncillo	0.825	59.0	7.12	43.60	27.87	22.15	63.24
115	INIFAP 48	ELO	0.715	60.95	8.97	55.86	36.70	29.78	59.44
116	INIFAP 50	ELO	0.843	71.85	7.11	52.17	34.15	27.22	63.88
117	INIFAP 52	ELO	0.736	54.02	7.83	54.42	36.69	28.97	60.18
118	INIFAP 55	Tuxpeño	0.847	58.42	7.18	49.78	33.11	25.47	63.99
119	INIFAP 56	Bofo	1.089	58.63	7.25	47.95	27.88	24.23	72.33
120	INIFAP 57	Bofo	1.010	48.99	6.98	50.78	31.90	26.52	69.61
	DMS Tukey	0.05	0.2499	12.070	0.934	3.023	2.744	2.644	8.610

Anc=Ancho, Bof=Bofo; Cel=Celaya; Dul=Dulce; ELC=Elotes cónicos; ELS=Elotero de Sinaloa; ELO=Elotes occidentales; Jal=Jala; Mus=Mushito; Ona=Onaveño; Tab=Tabloncillo; TaP=Tabloncillo perla; Tux=Tuxpeño; GeA=generaciones

avanzadas. ENG=energía neta de ganancia de peso, en Mcal/kgMS; MS=materia seca; PRO=proteína; FDN=fibra detergente neutro; FDA=fibra detergente ácido; LIG=lignina; DIV=digestibilidad *in vitro* de la materia seca; CEL=celulosa; HMCL=hemicelulosa.