# UNIVERSIDAD DE GUADALAJARA

# FACULTAD DE AGRONOMIA



"DESARROLLO DE UN ESTUDIO HIDROLOGICO PARA ALMACENAMIENTO EN LA LOMA, JALISCO."

# TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE :

Ingeniero Agrónomo

PRESENTA:

JOSE RICARDO JUAREZ AVILA



LA PRESENTE TESIS SE IMPRIMIO CON EL APOYO DE LA COMISION NACIONAL DEL AGUA



SECTION ESCOLARIDAD

EGTULENTE \_\_\_\_

NUMERO 0743/92

# UNIVERSIDAD DE GUADALAJARA FACULTAD DE AGRONOMIA

18 de Septiembre de 1992.

c. PROFESORES:

M.C. JESUS N. MARTIN DEL CAMPO MORENO, DIRECTOR ING. ALFONSO MUÑOZ ORTEGA, ASESOR ING. PABLO TORRES MORAN, ASESOR

Con toda atención me permito hacer de su conocimiento, que habiendo sido aprobado el Tema de Tesis:

" DESARROLLO DE UN ESTUDIO HIDROLOGICO PARA ALMACENAMIENTO EN LA LONA, JALISCO."

presentado por el (los) PASANTE (ES) JOSE RICARDO JUAREZ AVILA

han sido ustedes designados Director y Asesores, respectivamente, para - el desarrollo de la misma.

Ruego a ustedes se sirvan hacer del conocimiento de esta Dirección su -Dictamen en la revisión de la mencionada Tesis. Entre tanto, me es grato reiterarles las seguridades de mi atenta y distinguida consideración.

A T F N T A M E N T E "
"PIENSA Y TRABAJA"
"AÑO DEL BICENTENARIO"
EL SECRETARIO

M.C. SALVADOR WENA MUNGUIA

mam

ryr

LAS ACUJAS, MUNICIPIO DE ZAPOPAN, JALISCO



# UNIVERSIDAD DE GUADALAIARA FACULTAD DE AGRONOMIA

| Sección ESCUCARTUADO |
|----------------------|
| Expediente           |
| Namero 3743172       |

18 de Septiembre de 1992.

ING. JOSE ANTONIO SANDOVAL MADRIGAL DIRECTOR DE LA FACULTAD DE AGRONOMIA DE LA UNIVERSIDAD DE GUADALAJARA PRESENTE

|        | JOSE RIGARDO JUANEZ AVILA                                                           |
|--------|-------------------------------------------------------------------------------------|
| titula | ida:                                                                                |
|        | " DESARROLLO DE UN ESTUDIO HIDROLOGICO PARA ALMACEMAMIENTO<br>EN LA LONA, JALISCO." |
|        | Damos nuestra Aprobación para la Impresión de la mism                               |
|        | DIRECTOR                                                                            |
|        | De terre                                                                            |
|        | M.C. JESUS N. MARTIN DEL CAMPO MORENO ASESOR ASESOR                                 |
|        | X (In)                                                                              |
| HG. A  | LECHIO MUÑOZ ORTEGA ING. PABLO TORRES MORAN                                         |
| srd'   |                                                                                     |

LAS ACUDAS, MUNICIPIO DE ZAÇOPAN, JAL, APARTADO POSTAL NUM. 129/TEL, 21-79-92

# DEDICATORIAS

A mis padres:

VALERIO JUAREZ MARTINEZ

. VIRGINIA AVILA

por el apoyo que dieron y la confianza que me tuvieron para llegar a la terminación de mis estudios y muy especialmento a:

ISABEL AVILA "+"

A mis hermanos:

MARTHA

CARLOS

MARCELA

LAURA

GABRIEL

A mi esposa:

ROSA ELIA

A mis hijos:

HECTOR ALONSO

SARA EVELYN

AL DO

CESAR DOTAVIO

### **AGRADECIMIENTOS**

A la Universidad de Guadalajara:

por la oportunidad que me dió de realizar mis estudios.

Al E. C. Jesús N. Martín del Campo Moreno. Director de la presente, por la orienteción brindada para la realización de este trabajo.

A la SARH. principalmente a la Subdirección de ¿Estudios Específicos de la Dirección de Grande Irrigación, en donde inicie los primeros trabajos profesionales.

A la CNA, per la facilidades prestadas para la obtención de información  $\lor$  uso de equipo de cómputo.

# INDICE GENERAL

|    |                                                                                                                                                                                                                                                                                                                                                     | PAG.                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1. | INTRODUCCION                                                                                                                                                                                                                                                                                                                                        | 1                                                  |
| 2. | REVISION DE LITERATURA                                                                                                                                                                                                                                                                                                                              | 2                                                  |
|    | 2.1 DESARROLLO HISTORICO DE LA HIDROLOGIA<br>2.2 APLICACIONES DE LOS ESTUDIOS HIDROLOGICOS<br>2.3 DESARROLLO DE ESTUDIOS HIDROLOGICOS PARA ALMACENAMIENTO                                                                                                                                                                                           | 2<br>2<br>4                                        |
| 3. | MATERIALES Y METODOS                                                                                                                                                                                                                                                                                                                                | 13                                                 |
|    | 3.1 CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA 3.1.1 DESCRIPCION GENERAL DEL AREA DE PROYECTO 3.1.1.1 LOCALIZACION GEOGRAFICA 3.1.1.2 FISIOGRAFIA Y GEOMORFOLOGIA 3.1.1.3 GEOLOGIA 3.1.1.3.1 GEOLOGIA REGIONAL 3.1.1.3.2 GEOLOGIA DE BOQUILLA 3.1.1.3.3 GEOLOGIA DE VASO 3.1.1.4 HIDROGRAFIA 3.1.1.5 TOPOGRAFIA 3.1.1.6 SUELOS 3.1.1.7 CLIMATOLOGIA | 13<br>13<br>14<br>14<br>14<br>14<br>16<br>16<br>16 |
|    | 3.2 INFORMACION DISPONIBLE 3.2.1 INFORMACION CLIMATOLOGICA 3.2.2 INFORMACION HIDROMETRICA 3.2.3 INFORMACION TOPOGRAFICA 3.2.3.1 TOPOGRAFIA DE VASO                                                                                                                                                                                                  | 18<br>18<br>20<br>20<br>20                         |
|    | 3.3 ESTUDIO HIDROMETEOROLOGICO 3.3.1 DATOS METEOROLOGICOS 3.3.2 DATOS HIDROMETRICOS                                                                                                                                                                                                                                                                 | 22<br>22<br>22                                     |
|    | 3.4 REGIMEN DE ESCURRIMIENTOS 3.4.1 ESCURRIMIENTOS INFERIDOS A PARTIR DE LLUVIAS Y DE LAS CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA 3.4.2 METODO DE TRANSPORTE DE INFORMACION HIDROMETRICA                                                                                                                                                         | 22                                                 |
|    | 3.5 FUNCIONAMIENTO DE VASO 3.5.1 CAPACIDAD DE AZOLVE 3.5.2 EVAPORACION NETA 3.5.3 REGIMEN DE DEMANDAS 3.5.3.1 PROGRAMA DE CULTIVOS 3.5.3.2 USO CONSUNTIVO 3.5.3.3 LEY DE DEMANDAS 3.5.3.4 GASTO NORMAL DE LA OBRA DE TOMA 3.5.4 FUNCIONAMIENTO ANALITICO DE VASO                                                                                    | 30<br>30<br>30<br>30<br>32<br>32<br>32<br>32       |

|                                                                                                                                                                                                                           | PAG.                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 3.6 ESTUDIO DE AVENIDAS 3.6.1 CALCULO DE LA PENDIENTE DEL CAUCE 3.6.2 CALCULO DE LA CURVA "N" DE ESCURRIMIENTO 3.6.3 CALCULO DEL TIEMPO DE CONCENTRACION 3.6.4 ANALISIS ESTADISTICO DE PRECIPITACIONES MAXIMA EN 24 HORAS | 38<br>38<br>40<br>40<br>40<br>5<br>42<br>42 |
| 3.6.5 METODOS DE ESTIMACION DE AVENIDAS DE DISENO<br>3.6.5.1 METODOS EMPIRICOS<br>3.6.5.2 METODOS HIDROLOGICOS<br>3.6.5.3 METODO DE TRANSPORTE DE GASTOS MAXIMOS                                                          | 42<br>42<br>48<br>50                        |
| 3.7 TRANSITO DE AVENIDAS<br>3.7.1 BORDO LIBRE<br>3.7.2 CURVA DE ELEVACION VS VOLUMEN DE ALMACENAMIENTO<br>3.7.3 REGULARIZACION DE LA AVENIDA DE DISEÑO                                                                    | 51<br>51<br>52<br>52                        |
| 4. RESULTADOS Y DISCUSIONES                                                                                                                                                                                               | 54                                          |
| 4.1 REGIMEN DE ESCURRIMIENTOS                                                                                                                                                                                             | 54                                          |
| 4.1.1 ESCURRIMIENTOS INFERIDOS A PARTIR DE LLUVIAS Y<br>LAS CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA<br>4.1.2 ESCURRIMIENTOS TRANSPORTADOS                                                                              | 54<br>59                                    |
| 4.2 FUNCIONAMIENTO DE VASO<br>4.2.1 CAPACIDAD DE AZOLVES<br>4.2.2 FUNCIONAMIENTO ANALITICO DE VASO                                                                                                                        | <b>60</b><br>60<br>60                       |
| 4.3 AVENIDAS DE DISEÑO 4.3.1 METODOS EMPIRICOS 4.3.2 METODOS HIDROLOGICOS 4.3.3 METODO DE TRANSPORTE DE GASTOS MAXIMOS 4.3.4 SELECCION DEL GASTO DE DISEÑO                                                                | 63<br>63<br>63<br>69<br>70                  |
| 4.4 TRANSITO DE AVENIDAS<br>4.4.1 BORDO LIBRE                                                                                                                                                                             | 70<br>70<br>70                              |
| 4.4.2 REGULARIZACION DE AVENIDAS  5. CONCLUSIONES Y RECOMENDACIONES                                                                                                                                                       | 75                                          |
| 6. BIBLIOGRAFIA                                                                                                                                                                                                           | 77                                          |
| WE DEREGOVER TO                                                                                                                                                                                                           |                                             |

# INDICE DE CUADROS

| CUADRO | TITULO DE CUADRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAG.     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|        | DATOS DE TEMPERATURA EST. BUENAVISTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23       |
| 1      | DATOS DE PRECIPITACION EST. BUENAVISTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24       |
| 2      | DATOS DE PRECIPITACION EST. LOS LIMONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25       |
| 3      | DATOS DE EVAPORACION EST. LOS LIMONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26       |
| 4      | ESCURRIMIENTO MENSUAL TRANSPORTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27       |
| 5      | CLIMA SEGUNDO SISTEMA DE THORNTWAITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28       |
| 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31       |
| 7      | EVAPORACION NETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33       |
| 8      | USOS CONSUNTIVOS (SORGO, MAIZ, FRIJOL) USOS CONSUNTIVOS (CHILE, JITOMATE, CALABACITA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 9      | USOS CUNSUNTIVOS (CALLE, JITOMATE, GAZIBIOTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35       |
|        | USO CONSUNTIVO (SANDIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36       |
| 11     | LEY DE DEMANDAS DE RIEGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41       |
| 12     | CALCULO DEL TIEMPO DE CONCENTRACIÓN<br>FUNCIONES DE DISTRIBUCION EST. LOS LIMONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 13     | FUNCTIONES DE DISTRIBUCION EST. LOS CARONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45       |
| 14     | FINE FINES DE DISTURDOCTON GET L'ELLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47       |
| 15     | PRECIPITACION-DURACION-PERIODO DE RETORNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49       |
| 16     | SECUELA DE CALCULO (HIDROG. UNIT. TRIANG.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53       |
| 17     | CURVA DE ELEVACION VS CAPACIDAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56-57    |
| 18     | CALCULU DEL COEFICIENTE DE COC. TINONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58       |
| 19     | ESCURRIMIENTO MENSUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59       |
| 20     | ESCURRIMIENTO TRANSPORTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61-62    |
| 21-22  | MINICIAL DIANCE CONTRACTOR OF THE CONTRACTOR OF | 64       |
| 23     | CALCULO DE GASTOS MAXIMOS INSTANTANEOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45-68    |
| 24     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49       |
| 25     | METODO DE TRANSPORTE DE GASTOS MAXIMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71       |
| 26     | REGULARIZACION DE AVENIDAS (ASOC. SUIZA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 27     | REGULARIZACION DE AVENIDAS METODO NUMERICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / 25 / 🔾 |

# INDICE DE FIGURAS

| FIGURA                | TITULO DE FIGURA                                                                                                                                                                                                   | PAG.                             |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1<br>2<br>3<br>4<br>5 | SITUACION GEOGRAFICA DE PROYECTO TRIANGULO DE ISOYETAS CURVA DE AREAS Y CAPACIDADES DE VASO PENDIENTE PROMEDIO DEL CAUCE ANALISIS GRAFICO EST. LOS LIMONES ANALISIS GRAFICO EST. PERIBAN REGIMEN DE ESCURRIMIENTOS | 15<br>19<br>21<br>39<br>44<br>46 |
| 7<br>8                | ALTERNATIVA LONGITUD DE VERTEDOR                                                                                                                                                                                   | 74                               |

### RESUMEN

De acuerdo con lo expuesto en el presente trabajo, se analizó un Estudio Hidrológico Definitivo para el diseño de una presa de almacenamiento, determinando las características mas sobresalientes como capacidad total y gastos de diseño.

Para el diseño de la capacidad de la presa, se requirió de la estimación de los volúmenes de escurrimiento anual y mensual por el método climatulógico y el de transporte que toma en cuenta los escurridos en otra cuenca aledaña, existiendo discrepancias en los resultados entre ambos métodos.

En el estudio de avenidas, la aplicación de los diversos métodos se hace con el objeto de disponer de una serie de resultados, evidentemente diferentes con la finalidad de apreciar la magnitud de la avenida y finalmente aplicar un criterio de selección o rechazo, el cual dependerá del método empleado y de las restricciones aplicadas.

Los gastos de proyecto, fueron los definidos mediante la relación lluvia-escurrimiento (Hidrograma Unitario Triangular).

El gasto máximo de la avenida que descargará la obra de excedencias, se transitó por el vaso por el método de la Asociación Suiza de Ingenieros y el método numérico de Heún.

### 1. INTRODUCCION

Aún cuando se presupone que la cantidad total de agua en la tierra ha permanecido virtualmente constante, el rápido crecimiento de la población junto con la mayor extensión de la irrigación agrícola y el desarrollo industrial han incidido sobre los aspectos cuantitativos y cualitativos del sistema natural.

Prácticamente en todo el mundo, y principalmente en México, el aumento de la población, a provocado que el agua resulte escasa en relación a las necesidades, lo cual a originado el inicio de una política hidráulica orientada hacia el mejor aprovechamiento de los almacenamientos disponibles y hacia una rigurosa planeación de los recursos hidráulicos para el futuro. Esto último requiere del perfeccionamiento de los métodos y técnicas de los análisis hidrológicos.

Mediante los estudios hidrológicos, en sus diferentes enfoques o modalidades se permite desarrollar criterios de planificación, control o diseño. Incluyendo la administración eficiente del aqua.

En diversas regiones del territorio mexicano las fuentes de agua subterránea son ya insuficientes, tanto para abastecer las poblaciones como para proveer a los sectores agrícola é industrial, ante ésto, organismos oficiales como la Comisión Nacional del Agua (CNA) dirigen su atención para administrar y conservar el recurso, ya que el agua siempre ha constituído un elemento limitante.

En el presente trabajo, se abordará un análisis hidrológico aplicable a la región comprendida en la parte sureste del Estado de Jalisco, con colindancia con Michoacán y que se le conoce con el nombre de "Tierra Caliente", la cual se caracteriza por un clima de tipo estepario y un régimen de lluvias cercano a los 720 mm. en promedio y temperaturas elevadas, el objetivo del presente trabajo es el siguiente:

Generar la información suficiente, para proyectar una obra de almacenamiento que beneficie a una superficie de 1331 Has. para riego.

Mostrar la aplicación de técnicas hidrológicas de cálculo computarizado para diseñar una obra de infraestructura hidráulica.

Además exponer algunas metodologías para obtener las avenidas de diseño que son utilizadas en estudios hidrológicos de cuencas sin datos.

### 2. REVISION DE LITERATURA

### 2.1 Desarrollo histórico de la Hidrología

Desde los más remotos tiempos se conocen obras hidráulicas de cierta importancia.

El primer proyecto hidráulico se encuentra perdido en la bruma de la prehistoria. Quizás algún hombre prehistórico descubrió que una pila de rocas colocadas a través de una corriente elevaba el nivel del agua lo suficiente para inundar la tierra que era la fuente de su alimentación de plantas silvestres y en esta forma suministraba agua durante una sequía (Linsley, Kohler, Paulus, 1977).

Se tienen noticias de que en la antigua Mesopotamia existian canales de riego, construídos en la planicie situada entre los ríos Tigris y Eufrates.

También fueron construídas importantes obras de riego en Egipto, veinticinco siglos antes de Cristo, bajo la orientación de Uni. Durante la XII Dinastía se habían realizado significativas obras hidráulicas, inclusive el lago artificial de Meris, destinado a la regularización de las aguas del bajo Nilo.

Los griegos en 1400 A. C. fueron los primeros en iniciar el estudio de los escurrimientos superficiales tratando de conocer el origen de los rios según Rodríguez (1981).

En el período de 1600-1700, se desarrollaron los primeros estudios de los pozos artesíanos; de 1700-1800, con el desarrollo de los primeros trabajos experimentales sobre Hidráulica, se iniciaron los primeros trabajos hidrológicos cuantitativos. Posteriormente, durante el período de 1800-1900 la Hidrología experimental tuvo su gran apogeo y marcó mas firmemente el comienzo de la ciencia de la Hidrología.

Aranda (1984), considera que en México, aproximadamente a partir de 1965, la Hidrología experimental tuvo un gran cambio.

### 2.2 Aplicaciones de los Estudios Hidrológicos

En la actualidad, los Estudios Hidrológicos de las obras hidráulicas en proyecto o en operación, han adquirido casi un papel primordial.

Springall (1970), cita algunos de los principales objetivos que se requieren al diseñar una obra de ingeniería que involucre el aprovechamiento del agua.

a) Obtención de la avenida máxima que con una determinada frecuencia puede ocurrir en un cierto lugar, lo cual es necesario considerar al diseñar vertedores, puentes y drenajes en general.

b) Conocimiento de la cantidad, frecuencia y naturaleza de ocurrencia del transporte del agua sobre la superficie terrestre, lo cual servirà para el diseño de instalaciones de irrigación, abastecimiento de agua, aprovechamientos hidroeléctricos y navegación de ríos.

En el año de 1976, en el Plan Nacional de Obras de Ríego para el Desarrollo Rural, se define al Estudio Hidrológico como: la base para futuros aprovechamientos.

tos Estudios Hidrolágicos según el Manual para Proyectos de Pequeñas Obras para Riego y Abrevadero (1977), tienen las siguientes finalidades:

- 1. Determinar la capacidad de almacenamiento de la obra en función de la cantidad del agua de escurrimiento.
- 2. Determinar la magnitud de la avenida máxima que se puede presentar y para la cual se debe proyectar la obra de excedencias.

Aparício (1989), define al análisis hidrológico exhaustívo, como: el primer paso fundamental en la planeación, diseño y operación de proyectos hidráulicos. En la fase de planeación y, diseño, el análisis se dírige básicamente a fijar la capacidad y seguridad de estructuras hidráulicas. Además, permite determinar la disponibilidad de fuentes naturales y para saber si todo el abastecimiento es adecuado en todo tiempo, o si se requerirá de otras estructuras para corregir las deficiencias o para disponer de los volúmenes excedentes de agua.

Campos (1991), propone la necesidad e importancia de contar con normas para la elaboración de los Estudios Hidrológicos, en sus diferentes enfoques.

Presas de Almacenamiento de propósitos múltiples (Embalses medianos y grandes)

Presas de almacenamiento de propósito único (Embalses pequeños)

Presas de derivación y tomas directas

Presas rompepicos y de control

Rectificación y encauzamiento de ríos

Estructuras de drenaje en acueductos y caminos

Sistemas de drenaje pluvial y agricola

Elabora además, una clasificación para los Estudios Hidrológicos. Ya sea si son de diseño o de operación:

> Estudios Hidrológicos de Diseño (Definición de características hidrológicas)

> > 1. Fuera del contexto hidrológico regional

Preliminar de una sola obra hidráulica Definitivo de una sola obra hidráulica

2. Dentro del contexto hidrológico regional

De un embalse u otra obra hidráulica De sistemas de embalses

### Estudios Hidrológicos de Operación

1. De obras hidráulicas aisladas

De aprovechamiento de los escurrimientos De control de crecientes

2. De sistemas de embalses

De aprovechamiento de los escurrimientos De manejo de crecientes

### 2.3 Desarrollo de Estudios Hidrológicos para almacenamiento

El Estudio Hidrològico para obras de almacenamiento tiene por objeto determinar dentro de límites económicos la capacidad que resulte más adecuada de acuerdo con las características hidrológicas de la corriente por aprovechar y la disponibilidad de las tierras. También permite fijar las características hidráulicas de las obras de toma y excedencias.

Los Estudios Hidrológicos para éste tipo de obras comprende las siguientes determinaciones básicas:

- A. Régimen de los escurrimientos
- B. Ley de demandas
  - B.i Demandas de riego
  - B.2 Coeficiente de riego
  - B.3 Capacidad de la obra de toma
- C. Aportaciones de sedimentos
- D. Avenidas de diseño

### Régimen de escurrimientos

Los diversos criterios de que se dispone actualmente para estimar los volúmenes escurridos anuales de una corriente, se pueden clasificar en dos grandes grupos:

- Métodos que se basan en el transporte de información hidrométrica de una estación de aforos cercana, estos criterios también se conocen como Métodos de Similitud de Cuencas o de Analogía Hidrológica y
- 2) Métodos que se basan en la información climatológica disponible, principalmente en valores anuales de lluvia y temperatura media.

Clasificación de los métodos de estimación del escurrimiento anual y mensual

### Métodos de estimación del volúmen escurrido anual

Métodos basados en la similitud de cuencas

Método del transporte de información hidrométrica

Método de Heras

Fármula de Becerril

Métodos basados en datos climáticos

Método de Temez

Métodos basados en el déficit de escurrimiento

Fórmula de Turc

Formula de Cougtane

Método de Langbein

Método de Smith

Método del coeficiente de escurrimiento

# Métodos de estimación del volúmen escurrido mensual

Métodos del balance hídrico edafológico

Método del U.S. Conservation Service

Método de los fragmentos

### Funcionamiento de vaso

La finalidad de un funcionamiento de vaso es establecer las relaciones óptimas entre: el régimen de una corriente, las condiciones pluviométricas y de evaporación de la zona en estudio, la demanda, las capacidades del vaso, los volúmenes máximos aprovechables y las restricciones establecidas según el tipo de vaso. Para determinar la combinación adecuada con respecto a las aportaciones, capacidad útil y superfície de riego.

### Capacidad de azolves

ta palabra "azolve", incluye en su definición, todo el material transportado por una corriente de agua, ya bien sea acarreado en suspención, disuelto en la misma agua o transportado como carga de fondo.

El azolve se origina de la desintegración de las rocas y de la erosión de los suelos por agentes climáticos y geofísicos, tales como la lluvia, el viento y las heladas y es transportado por el agua y el aire.

Las cantidades de sedimentos que lleva una corriente, tanto en suspención como de arrastre y disolución, tienen gran importancia en el proyecto y aprovechamiento de estructuras hidráulicas y muy esencialmente en el diseño de presas de almacenamiento o derivación, ya que del factor azolve depende en forma importante la vida útil de ellas. No es económico construir un vaso muy costoso cuya vida útil sea corta y aunque se construyen algunos dispositivos para remover y desalojar los sedimentos que se han acumulado en los vasos de almacenamiento, aún no se han obtenido resultados prácticos y económicamente satisfactorios.

Los métodos que permiten calcular la magnitud de la aportación o transporte de sedimentos se pueden clasificar en dos grandes conjuntos, como son:

- a) Métodos que se basan en los datos de muestreo de sedimentos.
- b) Métodos indirectos de estimación.

Clasificación de los métodos de estimación de sedimentos

- 1º Métodos que utilizan los datos del muestreo de sedimentos.
  - a) Modelos de simulación
  - b) Métodos de procesamiento de los datos
- 2º Métodos que emplean escasos datos del muestreo de sedimentos, o la información de los materiales de que esta formado el cauca.
- 3º Métodos que permiten emplear la información hidrométrica (métodos estocásticos).
- 4º Métodos que se basan en la medición de los sedimentos depositados en los embalses.
- 5° Métodos basados en el coeficiente de entrega de sedimentos.
- 6° Métodos empiricos.

Dentro de éstos criterios, existen un gran número de fórmulas, tablas y gráficas de caracter empírico, que permiten efectuar una estimación muy rápida de la aportación de sedimentos de una cuenca. Desafortunadamente, estos métodos por su propia naturaleza, sólo deben de ser utilizados para tener una idea del orden de magnitud del valor buscado, o bien, para acotarlo.

7º Método de comparación de cuencas.

La aportación de sedimentos de una cuenca bajo estudio, puede ser estimada a partir del valor calculado en otra cuenca, siempre y cuando ambas pertenezcan a la misma región y sus características físicas (topografía, suelos, vegetación, uso del terreno, etc.) sean similares; además, la relación de áreas de drenaje debe ser la siguiente: el tamaño de la cuenca en la que la magnitud de la aportación de sedimentos es conocida, no debe ser menor de la mitad, ni mayor del doble

del tamaño de la cuenca en estudio, es decir, aquella para la cual se requiere la inferencia.

### Evaporación neta

El problema que plantean las mediciones de evaporación en depósitos pequeños como es el evaporimetro, deben corregirse si se desean usar para estimar la evaporación en presas, lagos o cualquier otro tipo de gran almacenamiento.

### Funcionamiento analítico de vaso

El estudio del funcionamiento analítico de un vaso, nos da a conocer las fluctuaciones que experimenta el nivel del agua en el vaso por efecto de las aportaciones, extracciones y evaporaciones. También nos da a conocer los derrames que se realizan por la obra de excedencias, y las deficiencias que se tienen cuando el vaso no puede satisfacer las demandas de riego.

Cuando el porcentaje de deficiencias con relación al volúmen teórico de demandas de riego se encuentra entre el 1 y 5%, se considera que el funcionamiento de vaso es correcto. La fórmula para su cálculo es la siguiente:

En caso de que el porcentaje de deficiencias sea mayor del 5%, será necesario hacer otro funcionamiento de vaso, en donde se disminuirá la superficie beneficiada con el cálculo de la Ley de Demandas. Se harán tanto funcionamientos como sea necesario, hasta llegar a los límites permisibles.

Cuando no existan deficiencias, se deberá aumentar la superficie por regar y realizar nuevamente el funcionamiento del vaso hasta lograr del 1 al 5% de deficiencias.

Una vez obtenido el porciento de deficiencias requerido, se calcula el volúmen aprovechable medio anual (v.a.m.a) mediante la fórmula:

### donde:

años período de estudio

demanda cálculo de la ley de demandas en miles de m3. deficiencias suma de deficiencias en miles de m3. El porcentaje de aprovechamiento es la relación del volúmen aprovechable medio anual y el volúmen escurrido medio anual por cien. Según Rodríguez ( ), la SARH no permite que éste valor supere el 70% de aprovechamiento.

### Estudio de avenidas

Para la estimación de una avenida máxima se dispone de diversos métodos de cálculo:

- 1. Métodos empiricos
- 2. Métodos históricos
- 3. Métodos de correlación hidrológica de cuencas
- 4. Métodos directos o hidráulicos
- 5. Métodos estadísticos o probabilísticos
- Métodos hidrológicos o de relación lluviaescurrimiento

### 1. Métodos empiricos

La aplicación de los métodos empiricos nunca debe evitarse, pues aunque su confiabilidad es escasa, por su rapidéz de aplicación permiten definir el orden de magnitud de la avenida que se estima.

ta mayoría de los modelos empíricos que se han desarrollado para relacionar la precipitación y el escurrimiento se basa en los datos particulares de alguna region, por lo que su aplicación muchas veces se restringe a ella.

La diferencia principal entre un método y otro está en cual o cuáles características de la cuenca se consideran y en los parámetros que determinan.

Dentro de los métodos empíricos destacan los siguientes cuatro:

- 1. Fórmulas empiricas
- 2. Método empírico del U.S. Soil Conservation Service
- 3. Método Racional
- 4. Método del Indice Area

La selección del método de cálculo para cada problema particular depende básicamente de la calidad y cantidad de la información disponible, de tal manera que no puede decirse que existan métodos mejores y peores.

### 2. Métodos históricos

Los métodos históricos consisten en la investigación y recopilación de datos sobre las avenidas ocurridas en un río o en un embalse.

### 3. Métodos de correlación hidrológica de cuencas

Cuando en una cuenca bajo estudio no se cuenta con datos hidrométricos y pluviométricos, la estimación de la avenida máxima puede intentarse mediante correlación con los datos de gastos máximos de una cuenca próxima, cuyas características

climáticas, topográficas, geológicas, edafológicas y de covertura vegetal, sean lo más similares posibles con la cuenca de estudio.

 Métodos directos o hidráulicos (Método de sección y pendiente)

Este procedimiento para calcular el gasto máximo de avenidas, se utiliza en aquellos casos que sin tener información hidrométrica se tiene conocimiento del paso de una avenida de grandes proporciones, ocurrida años atras y que en algunos lugares del cauce, se pueden percibir las huellas del nivel máximo del agua.

### 5. Métodos estadísticos o probabilísticos

Todos los métodos estadísticos se basan en considerar que el gasto máximo anual es una variable aleatoria que tiene una cierta distribución. En general, si se cuenta con pocos años de registro, la curva de distribución de probabilidades de los gastos máximos se tiene que prolongar en su extremo, para inferir un gasto mayor a los registrados.

 Métodos hidrológicos o de relación lluviaescurrimiento

Estos métodos tienen como objetivo la reconstrucción matemática del proceso o fenómeno de la formación de la avenida, es decir, se supone una lluvia de duración y período de retorno determinado, dentro de lo probable y se calcula el escurrimiento que genera en un punto de la corriente estudiada, hasta llegar a dibujar el probable hidrograma de la avenida que se calcula.

### Selección del gasto de diseño

Como avenida de diseño se entiende el régimen de escurrimiento que entra a un vaso de almacenamiento en cierto tiempo y cuyo tránsito por el vaso produce condiciones de descarga que servirán para determinar la capacidad de la obra de excedencias.

El problema de seleccionar la avenida de diseño de la obra de excedencias tiene dos aspectos que se deben considerar:

- 1º El riesgo que se desee aceptar.
- 2º La magnitud de la avenida que sea congruente con dicho riesgo.

Para alturas de continas mayores de 40 mts. y hasta 30 Mm3. de capacidad el Consultivo Técnico recomienda considerar las avenidas con períodos de retorno de 1000 y 10000 años, para el diseño del vertedor y revisión del bordo libre. De acuerdo con la normatividad de la Dirección de Irrigación y Drenaje, se considera un período de retorno de 10000 años para el diseño del vertedor.

La Subdirección de Administración del Agua (Enero 1992), establece las normas relativas a períodos de retorno que deben utilizarse en la determinación de gastos máximos de diseño, correspondientes a los diversos tipos de obras hidráulicas.

### Tránsito de avenidas

- El tránsito de las avenidas es una técnica que se emplea para conocer el cambio de forma y el desplazamiento en el tiempo del hidrograma de entrada al vaso de una presa.
- El tránsito de una avenida a través de un vaso de almacenamiento se realiza con los siguientes propósitos:
  - a) Conocer la evolución de los níveles a partir de uno inicial para confirmar si la regla de la operación seleccionada (política de salidas por la obra de excedencias y la obra de toma) es adecuada, de manera que al presentarse la avenida no se pongan en peligro la presa, bienes materiales o vidas humanas aquas abajo.
  - b) Dimensionar la obra de excedencias durante la etapa de estudios y proyecto.

Los métodos para efectuar el tránsito de avenidas, incluyen métodos aritméticos, gráficos, en computadoras y analégicos.

Un aspecto importante en el tránsito de avenidas es la selección del método adecuado a cada problema. Esto dependerá de la presición en el estudio, y del número de veces que habra de aplicarse.

### 3. MATERIALES Y METODOS

### 3.1 CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA

Para describir las características fisiográficas de la cuenca se dispuso de la carta topográfica, geológica, uso del suelo, edafológica, etc. Esc. 1:50,000 (E13-B38), publicadas por DETENAL, (1977).

### 3.1.1 DESCRIPCION GENERAL DEL AREA DE PROYECTO

La infraestructura hidroagricola de apoyo es nula, ya que no existen obras hidráulicas que permitan explotar una agricultura más intensiva sobre todo durante la época de estiaje.

la infraestructura existente más cercana son dos pozos profundos localizados al sur de la población de Tazumbos, los cuales son utilizados para el riego de 57.00 has, del ejido del mismo nombre.

Al sureste de la zona de estudio se encuentra en operación la presa Chilatán, la cual beneficia al estado de Michoacán. Fuera de éstos antecedentes no existe ninguna otra obra hidráulica.

Actualmente la zona presenta una agricultura de temporal, siendo sus principales cultivos:

| CULTIVO   | %  |
|-----------|----|
| SORGO     | 60 |
| MAIZ      | 35 |
| AJONJOL I | 5  |

### 3.1.1.1 LOCALIZACION GEOGRAFICA

El município de Jilotlán de los Dolores se localiza al sureste del Estado de Jalisco, el cual limita al norte con el município de Manuel M. Diéguez, al sur, sureste y este con el Estado de Michoacán y al oeste con el município de Tecalitlán.

El área de proyecto se localiza en la porción noreste del municipio de Jilotlán de los Dolores.

La cuenca del proyecto se ubica en la Región Hidrológica Nº 18 Parcial. De la Cuenca del Río Tepalcatepec.

Las coordenadas geográficas son las siguientes

Latitud Norte 19° 26' 16''

Langitud Deste 102° 37′ 06''

Contando con una altitud de 1,127 m. sobre el nivel del mar, siendo su más cercana e importante localidad el centro poblacional "la Loma", en cuyo núcleo se encuentra asentada la población a beneficiar con el proyecto. Fig. 1.

### 3.1.1.2 FISIOGRAFIA Y GEOMORFOLOGIA

El sitio de estudio se localiza en la provincia fisiográfica denominada "Eje Neovolcánico" (Erwin Raiz, 1964), caracterizada por existir en ella numerosos volcanes y lagos, cuya orientación y distribución dan idea de estar situados en fosas tectónicas, así mismo se caracteriza por la intensa actividad volcánica que ahí se desarrolla.

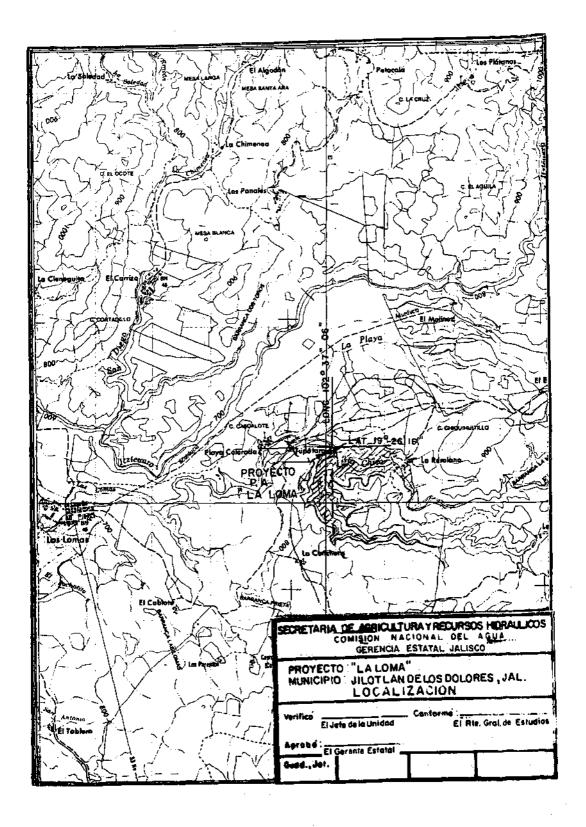
Geomorfológicamente el sitio presenta una etapa de juventud avanzada, observándose en su mayoría grandes montañas de tipo volcánico y conos cineríticos que rodean a la obra propuesta, así mismo se observan barrancas, producto de fracturamiento intenso o en su defecto por su drenaje que en conjunto en arroyos y ríos se puede apreciar un drenaje radial, volcánico y a veces rectangular.

### 3.1.1.3 GEOLOGIA

### 3.1.1.3.1 GEOLOGIA REGIONAL

La geología se encuentra en extremo alterada por movimientos tectónicos e intensa actividad.

Regionalmente se observan comos cineríticos compuestos de arenas y cenizas volcánicas, mismos que se han utilizado en bancos.


Predominan en la región rocas igneas extrusivas, intermedias y básicas representados por basaltos que cubren a andesitas, ambas rocas con sus correspondientes materiales piroclásticos, tales como tobas, aglomerados, arenas, cenizas, etc.

### 3.1.1.3.2 BEOLOGIA DE BOQUILLA

La boquilla se encuentra topográficamente y geológicamente asimétrica.

Por su margen derecha aflora toba basáltica compacta, color crema que intemperiza a gris claro, en parte se observa brechosa. Hacia su parte baja ésta se encuentra cubierta por tierra vegetal, arcilla y por una terraza aluvial.

En el cauce aflora tizate, (ceniza fina permeable), la cual



es cubierta por arena, cantos y guijarros.

En su margen derecha aflora conglomerado implicado en material tobáceo, constituido por gravas y cantos que van de 3º de diámetro a 50 cms. De la parte baja hacia la margen se va haciendo mas compacto.

En la parte alta del eje aflora una andesita porfirítica, color rosado, ésta se encuentra fracturada.

### 3.1.1.3.3 GEOLOGIA DE VASO

En toda la extensión del vaso, aflora la brecha heterogénea compacta, empacada en material tobéceo de color gris claro que intemperiza a gris obscuro.

Unicamente en el cauce del arroyo, hace manifestación la andesita porfirítica fracturada muy compacta e impermeable que le subyace a la brecha.

En la zona del cauce, en su mayoría se observan acarreos constituídos de cantos, boleos y guijarros escaseando la arena.

No se observa ningún accidente geológico que pueda ocasionar fuga de agua.

El proyecto se encuentra dentro de la zona penesismica de sismos frecuentes.

### 3.1.1.4 HIDROGRAFIA

La corriente principal que tiene influencia sobre la cuenca tiene su desarrollo en el Cerro Tancitaro aproximadamente a una elevación de 3,620 m.s.n.m. y que en conjunto con las corrientes tributarias drena un área de 120.79 km² hasta el sítio de proyecto.

### 3.1.1.5 TOPOGRAFIA

El área que conforma la cuenca del proyecto tiene una superficie de 120.79 km² y es de forma alargada predominando una altura de 3,700 m.s.n.m.

La topografía del vaso tiene forma alargada de figura irregular, con un ancho de boquilla de 400 m.

### 3.1.1.6 SUELOS

Apoyado en información de la carta edafológica de DETENAL (E13-838), los suelos de la zona se clasifican en Vertisoles crómico, y en pélico.

# aradades de dadicios (Delocades)

# 3.1.1.7 CLIMATOLOGIA

Utilizando el Sistema de Clasificación Climática de Köppen (1981), el clima es Semiseco, con lluvias de verano, % de lluvia invernal menor de 5 y que se representa con las fórmulas BS1 (h') w (w) y BS0 (h') w (w).

### 3.2 INFORMACION DISPONIBLE

### 3.2.1 INFORMACION METEOROLOGICA

Como no se cuenta con una estación pluviométrica dentro de la cuenca, las precipitaciones se determinan en forma indirecta mediante los datos históricos de otras estaciones que se localicen cerca de la cuenca de proyecto. Dichas estaciones deberán ser como mínimo tres.

Con las precipitaciones y la ubicación de las estaciones elegidas se forma un plano de isoyetas con el cual se puede conocer la precipitación en el centroide de la cuenca de proyecto.

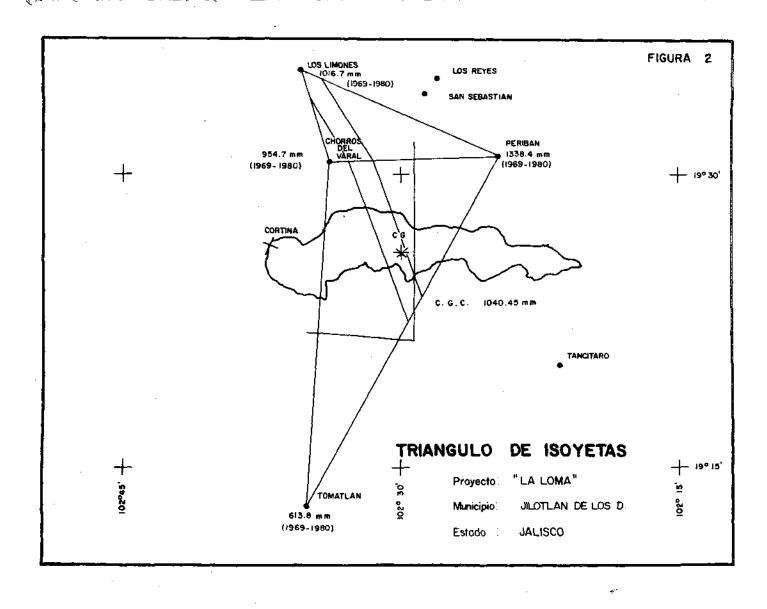
Para la construcción del triángulo de isoyetas (fig. 2), con período común de 12 años (1969-1980) las estaciones que sirvieron de apoyo por su relativa proximidad a la cuenca son:

| Buenavista            | 102°35'09''   | 19°13'00'' |
|-----------------------|---------------|------------|
| Los Chorros del Varal | 102*33'51''   | 19°30'39'' |
| Los Limones           | 102*35 126 11 | 19°35'24'' |
| Peribán               | 102°24′       | 19°30'56'' |

Localizadas en el Estado de Michoacán.

La precipitación media en el centro de gravedad de la cuenca es de 1040.45 mm.

La estación elegida para "estación base", por contar con el mayor número de observaciones (1955-1981) con 27 años es Los Limones.


La precipitación media anual de la estación base es de 1011.4 mm.

Las precipitaciones en el centro de gravedad de la cuenca se calculan multiplicando los valores de los datos registrados en la estación base, por un coeficiente "K", cuyo valor es:

K = Coeficiente de transporte

Prec. c.g.c. \* Precipitación en el centro de gravedad de la cuenca.

Prec. Est. base # Precipitación en la estación base



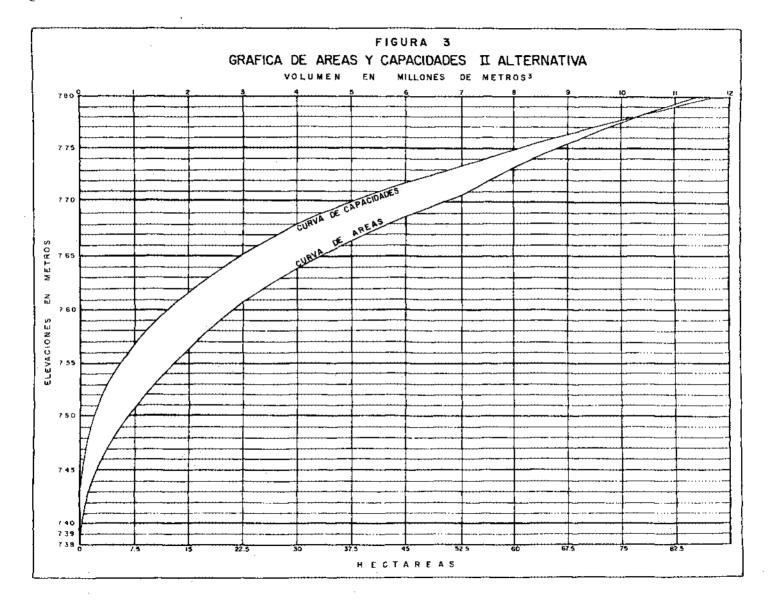
 $k = \frac{1040.45}{1011.40}$ 

### = 1.02872256279

Teniendo el coeficiente anterior, bastará multiplicar por las precipitaciones anuales y/o mensuales registradas en la "estación base", para deducir las correspondientes en la cuenca.

# 3.2.2 INFORMACION HIDROMETRICA

En la corriente por aprovechar Rio Chico-Carrizalillo, no se cuenta con una estación de aforo que permita conocer el régimen de escurrimiento.


Sin embargo sobre el Río Apupataro de una cuenca aledaña funciona la estación hidrométrica Tejones, con un período de observación de 1955-1969.

# 3.2.3 INFORMACION TOPOGRAFICA

# 3.2.3.1 TOPOGRAFIA DE VASO

Se cuenta con un plano del levantamiento topográfico de vaso, escala 1:2,000, con fecha de ejecusión de Agosto de 1987. Con equidistancia entre curvas de nivel cada metro.

En la fig. 3, se muestra la curva de áreas y capacidades del embalse.



### 3.3 ESTUDIO HIDROMETEOROLOGICO

3,3,1 DATOS METEOROLOGICOS

Cuadros 1-4.

3.3.2 DATOS HIDROMETRICOS

Cuadro 5.

### 3.3.3 CLIMATOLOGIA

la descripción del clima de la zona de riego, utilizando el Segundo Sistema de Thornthwaite (1982), es Seco, con nula demasía de agua, cálido con concentración normal de calor, cuadro 6.

ان |خانته می

6 8

K Si

ENGREDAD IN ADDOX

### 3.4 REGIMEN DE ESCURRIMIENTOS

Con bastante frecuencia, los embalses que se diseñan para dotar de riego a pequeñas áreas, quedan lógicamente localizados en arroyos o corrientes de reducida importancia, comúnmente no aforadas y entonces surge la necesidad de inferir o estimar el régimen hidrológico de dicha corriente.

Por otra parte la información hidrométrica que es requerida para el diseño hidrológico de pequeñas presas de almacenamiento, se puede reducir a los volúmenes escurridos mensuales, siendo lo más viable, realizar estimaciones del escurrimiento a nivel anual y luego a partir de tales valores inferir los volúmenes mensuales.

3.4.1 ESCURRIMIENTOS INFERIDOS A PARTIR DE LLUVIAS Y DE LAS CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA

El procedimiento para determinar el valor probable del coeficiente de escurrimiento para un aprovechamiento en estudio, cuando no se tienen datos de aforo, se evalúa con las fórmulas siguientes:

### siendo:

C = Coeficiente de escurrimiento anual, adimensional.

P = Precipitación anual en milimetros.

k = Parámetro que depende del típo y uso o cubierta del suelo. C.N.A

### SUBGERENCIA DE ADMINISTRACION DEL AGUA

| LATITUD  | 19*12'00''  |             | CONTROLADA POR | C.F.E      |
|----------|-------------|-------------|----------------|------------|
| LONGITUD | 102*36'00'' | TEMPERATURA | ESTAC10N       | BUENAVISTA |
| ALTITUD  | 450 mts.    | *C.         | ESTADO         | MICHOACAN  |

| Ļ  | ands  | ì  | enero | Н  | ebrero: | MARZO | ŀ  | ABRIL | 1   | <b>1</b> 4Y0 | ŀ  | JUNIO | ١ | INTIO | H | VSOST0 | iS | EPTIEN: | OC | Tubre | lN  | MIEW  | 3 ! | DICIEMB | 1 6 | anual         |   |
|----|-------|----|-------|----|---------|-------|----|-------|-----|--------------|----|-------|---|-------|---|--------|----|---------|----|-------|-----|-------|-----|---------|-----|---------------|---|
| ŀ, |       | ١. |       | J. | الليا   |       | ł, |       | ۱_  |              | ł, |       | ł |       | ŀ |        | Ļ  |         |    |       | ١   |       | _l  |         | ۱_  |               | _ |
| ì  | 1969  | ١  |       | 1  | 25.8    | 24.1  | ŧ  | 23.4  | ١   |              | ,  |       | ŀ |       | ł | 26.6   | ľ  | 27.1    |    | 27.3  | 1   | 26.4  | ţ   | 24.5    | 1.7 | 205.2         |   |
| t  | 1970  | ŀ  | 24.7  | ŀ  | 26.1    | 26.5  | ľ  | 28.9  | ŀ   | 29.8         | i  | 28.9  | ŀ | 27.1  | ł | 27.1   | ŧ  | 26.2    |    | 20.2  | :   | 26.3  | į   | 25.0    | 1.7 | 324.B         |   |
| ŀ  | 1971  | į  | 25.5  | ŀ  | 25.1    | 27.7  | i  | 27.8  | ŀ   | 29.5         | ļ  | 29.1  | i | 27.B  | ļ | 26.7   | ;  | 27.0 !  |    | 26.6  | i   | 26.1  | ì   | 25.4    | ! 3 | 524,3         |   |
| ţ  | 1972  | Į  | 25,4  | [  | 25.6 1  | 27.8  | ł  | 30.0  | È   | 31.0         | į  | 29.3  | l | 28.0  | ł | 27.4   | ŀ  | 27.6 :  |    | 28.3  |     | 27.3  | 1   | 26.0    | 1.3 | <b>532.</b> 7 |   |
| ŧ  | 1973  | ŀ  | 25.2  | 1  | 26.9    | 28.3  | ì  | 29.1  | 1   | 30.4         | ļ  | 28.9  | ĺ | 27.9  | ŀ | 27,1   | į  | 27.2 1  |    | 26.3  | i   | 25.0  | ţ   | 23.6    | 1.3 | \$26.9        |   |
| ŀ  | 1974  | Į  | 25.2  | ł  | 25.9 1  | 27.1  | ł  | 29.2  | ŀ   | 29.0         | ŀ  | 28.0  | ŀ | 26.7  | ł | 27.3   | ŀ  | 27.6    |    | 27.8  | ŀ   | 26.6  | 1   | 25.4    | 1.3 | 325.0         |   |
| ì  | 1975  | 1  | 24.2  | ì  | 25.5    | 27,3  | i  | 29.6  | 1   | 30.3         | •  | 28.2  | į | 26.1  | ŀ | 26.3   | 1  | 26.7 1  |    | 27.5  | 1   | 26.8  | ŀ   | 24.4    | 1.3 | 522.9         |   |
| ŀ  | 1976  | ŀ  | 24.7  | ŧ  | 25.6    | 27.6  | ŀ  | 29.1  | ŧ   | 30.3         | ŀ  | 29.3  | 1 | 26.8  | 1 | 26.9   | ÷  | 27.4 1  |    | 26.7  | į   | 24.5  | 1   | 24.8    | 13  | 523.7         |   |
| ŀ  | 1977  | ì  | 24.8  | ł  | 26.0    | 27.8  | į  | 28.8  | ł   | 30.1         | ŀ  | 27.9  | L | 27.5  | ŀ | 27.5   | 1  | 27.6    |    | 28.2  | 1   | 26.6  | ;   | 25.5    | : 7 | 28.3          |   |
| ŀ  | 197B  | ;  | 24.8  | ł  | 25.2 1  | 27.5  | ŀ  | 29.5  | ŀ   | 30.7         | i  | 28.7  | ì | 27.3  | ŀ | 27.2   | 1  | 26.6 :  |    | 26.2  | 1   | 26.5  | :   | 26.2    | 1 3 | 526.4         |   |
| ŀ  | 1979  | ţ  | 25.1  | ŀ  | 27.0 1  | 28.2  | į  | 29.7  | Ļ   | 30.1         | ļ  | 30.2  | ŧ | 28.8  | ŀ | 28.5   | ŧ  |         |    |       | 1   |       | ŀ   |         | 2   | 227.6         |   |
| ŀ  | 1980  | :  | 24.5  | ŀ  | 25.4 1  | 27.7  | ì  | 29.5  | ŀ   | 31.5         | ì  | 30.8  | i | 28.4  | ŀ | 27.3   | ŀ  | 27,5 4  |    | 27.6  |     | 26.0  | 1   | 26.0    | 1.3 | 532.2         | ! |
| ١. |       | E  |       | í  |         |       | 1  |       | !   |              | ŀ  |       | 1 |       | i |        | Ŀ  |         |    |       | 1   |       | ì   |         | :   |               | į |
| ľ  | SLMA  | ;  | 274.1 | ï  | 310.1   | 327.6 | ſ  | 344.6 | : 3 | 32.7         | ľ  | 318.3 | 1 | 302,4 | 1 | 325.9  | ľ  | 298.5   | 3  | 00.7  | ::3 | 289.1 | ï   | 276.8   | :37 | 700.8         | • |
| 1  | · .   | ľ  |       | í  | _ :     |       | ŀ  |       | ١.  |              | ļ  |       | ŀ |       | ŀ |        | ŀ  | ;       |    |       |     |       | 1   | _       | ŧ., |               | 1 |
| ř  | MEDIA | ï  | 24,9  | ï  | 25.8    | 27.3  | ŗ  | 28.7  | ī   | 30.2         | i  | 28.9  | ï | 27.5  | ŀ | 27.2   | ١- | 27.1    | Т  | 27.3  | :-  | 26.3  | ŀ   | 25.2    | 1   | 27.2          | - |

C.N.A

### SUBGERENCIA DE ADMINISTRACION DEL AGUA

| 1970   1.8   0.0   0.0   0.0   0.0   224.5   135.8   130.7   137.2   17.5   1.2   0.0     1971   0.0   0.0   0.0   0.0   41.5   161.2   55.7   103.9   175.6   160.6   0.0   0.0     1972   0.0   0.0   3.4   0.0   19.6   108.3   168.5   42.7   51.1   86.2   34.6   0.0     1973   0.0   2.0   0.0   8.9   39.1   160.6   43.4   156.7   168.5   158.1   0.0   0.0     1974   0.0   0.0   0.0   0.0   28.0   240.8   93.6   104.9   61.4   20.1   2.0   13.0     1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0     1976   0.0   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0     1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0     1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0     1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3     1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | C.F.E<br>BUENAVIS<br>KICHDACA |                 | CONTROLA<br>ESTACION<br>ESTADO |         | I       | PITACION<br>Mm. |         |       | 0     | 19*12*00<br>102*36*0<br>450 mts. | D           | LATITUE<br>LONSITU<br>ALTITUE |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|-----------------|--------------------------------|---------|---------|-----------------|---------|-------|-------|----------------------------------|-------------|-------------------------------|--------|
| 1970   1.8   0.0   0.0   0.0   0.0   224,5   135.8   130.7   137.2   17.5   1.2   0.0     1971   0.0   0.0   0.0   0.0   41.5   161.2   55.7   103.9   175.6   160.6   0.0   0.0     1972   0.0   0.0   3.4   0.0   19.6   108.3   168.5   42.7   51.1   86.2   34.6   0.0     1973   0.0   2.0   0.0   8.9   39.1   160.6   43.6   156.7   168.5   158.1   0.0   0.0     1974   0.0   0.0   0.0   0.0   0.0   229.0   240.8   93.6   104.9   61.4   20.1   2.0   13.6     1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0     1976   0.0   0.0   0.0   0.0   3.1   0.0   149.0   151.5   67.4   55.2   128.4   118.7   0.0     1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0     1978   27.0   1.0   6.5   7.0   3.0   89.1   17.2   143.2   162.4   108.4   0.0   0.1     1979   0.0   3.3   0.0   0.0   1.2   42.5   145.9   62.9   108.6   61.4   16.9   5.3     1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   67.7   32.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANUAL     | DICIENT                       | NOVIEW          | LOCTUBRE                       | SEPTIEN | (AGOSTO | 1 JUL 10        | IUNIO   | MAYO  | ABRIL | MARZO                            | IFEBRERO:   | ENERO                         | ANOS   |
| 1971   0.0   0.0   0.0   0.0   41.5   161.2   55.7   103.9   175.6   160.6   0.0   0.0   1972   0.0   0.0   3.4   0.0   19.6   108.3   168.5   42.7   51.1   86.2   34.6   0.0   1973   0.0   2.0   0.0   8.9   39.1   160.6   43.6   156.7   168.5   158.1   0.0   0.0   1974   0.0   0.0   0.0   0.0   28.0   240.8   93.6   104.0   61.4   20.1   2.0   13.0   1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0   1976   0.0   0.0   0.0   0.0   3.1   0.0   149.0   151.5   67.4   152.2   128.4   118.7   0.0   1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0   1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1977   0.0   5.3   0.0   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   53.4   0.6   1978   98.0   98.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1980   98.0   0.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   11.5   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   111.7   11 | 513.0     | 8.6                           | 0.0             | · <u> </u>                     | 86.1    | 154.8   | 96.5            | 69,7    | 0.0   | 0.0   |                                  | ''<br>  1,1 | 9.0                           | 1969   |
| 1972   0.0   0.0   3.4   0.0   19.6   108.3   168.5   42.7   51.1   86.2   34.6   0.0     1973   0.0   2.0   0.0   8.9   39.1   160.6   43.6   156.7   168.5   158.1   0.0   0.0     1974   0.0   0.0   0.0   0.0   28.0   240.8   93.6   104.9   61.4   20.1   2.0   13.0     1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0     1976   0.0   0.0   0.0   0.0   3.1   0.0   149.0   151.5   67.4   55.2   128.4   118.7   0.0     1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0     1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0     1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3     1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 648.7     | 1 0.0 1                       | 1.2             | 17.5                           | 1 137.2 | 1 130.7 | 135.6           | 224,5   | 0.0   | 0.0   | 0.0 1                            | 1 0.0 /     | 1.8                           | 1 1970 |
| 1 1973   0.0   2.0   0.0   8.7   39.1   160.6   43.6   156.7   168.5   158.1   0.0   0.0   1 1974   0.0   0.0   0.0   0.0   28.0   240.6   93.6   104.0   61.4   20.1   2.0   13.0   1 1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0   1 1976   0.0   0.0   0.0   0.0   3.1   0.0   149.0   151.5   67.4   55.2   128.4   118.7   0.0   1 1977   0.0   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0   1 1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1 1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1 1980   98.0   0.0   0.0   9.0   9.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 498.5     | 0.0                           | 0.0             | 1 160.6                        | 1 175.6 | 1 103.9 | 55.7            | 161.2   | 41.5  | 0.0   | 0.0 ;                            | : 0,0 1     | 0.0                           | : 1971 |
| 1974   0.0   0.0   0.0   0.0   28.0   240.8   93.6   104.9   61.4   20.1   2.0   13.0   1975   28.6   0.0   0.0   0.0   53.1   156.2   167.3   113.7   75.2   5.8   0.0   0.0   1976   0.0   0.0   0.0   0.0   3.1   0.0   149.0   151.5   67.4   55.2   128.4   118.7   0.0   1977   0.0   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0   1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 514.4     | 0.0                           | 34.6            | 66.2                           | 51.1    | 1 42.7  | 1 168.5         | 1 108.3 | 19.6  | 0.0   | 3.4 1                            | 1 0.0 1     | 0.0                           | 1972   |
| : 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ‡ 737.5 · | 0.0                           | 0.0             | 1 158.1                        | 168.5   | 156.7   | 43.6            | 160.6   | 39.1  | 8.9   | 0.0                              | 2.0 1       | 0.0                           | 1973   |
| 1976   0.0   0.0   0.0   0.0   3.1   0.0   147.0   151.5   67.4   55.2   128.4   118.7   0.0   1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0   1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 562.9     | 13.0                          | 2.0             | 20.1                           | 1 61.4  | 1 104.0 | 93.6            | 240.6   | 28.0  | 0.0   | 0.0 1                            | 1 0.0 1     | 0.0                           | 1974   |
| 1977   0.0   0.0   0.0   2.7   26.7   156.9   62.4   137.1   158.3   8.7   0.0   3.0   1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 599.9     | 1 0.0 1                       | ( <b>0.</b> 0 ) | 1 5.8                          | 75.2    | 1113.7  | 167.3           | 156.2   | 53.1  | 0.0   | 0.0 :                            | 0.0 :       |                               | _      |
| 1978   27.0   1.0   6.5   7.0   3.0   89.1   172.2   143.2   162.4   108.4   0.0   0.0   1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 673.3   | 1 0.0 1                       | 110.7           | 128,4                          | : 55.2  | 67.4    | : 551.5         | 149.0   | 0.0   | 3.1   | 0.0                              | 0.0 1       | 0.0                           | 1976   |
| 1 1979   0.0   3.3   0.0   0.0   1.2   42.6   145.9   62.9   108.6   61.4   16.9   5.3   1980   98.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.6   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 555.8     |                               |                 |                                | . ,,    |         | 62.4            | 156,9   | 26.7  |       |                                  | : 0.0 :     |                               |        |
| 1 1980   98.0   0.0   0.0   0.0   0.0   0.0   113.0   125.5   125.1   111.7   87.7   32.4   0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 719.8     |                               | 0.0             |                                |         |         | 172.2           | 69.1    |       |       |                                  |             |                               |        |
| IIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 448.1     |                               |                 |                                |         |         |                 |         |       |       |                                  |             |                               |        |
| SEMA   164.4   7.4   9.9   21.7   212.2   1671.9   1418.5   11342.2   1351.3   930.1   205.8   30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 694.0     | 0.6                           | 32.4            | 1 87.7 1                       | 1111.7  | 1 125.1 | 125.5           | 113.0   | 0.0   | 9.0   | 0.0                              | 1 0.0       | 99.0                          | 1980   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7365.9    | 30.5                          | 205.8           | 930.1                          | 1351,3  | 1342.2  | 1418.5          | 1671.9  | 212.2 | 21.7  | 9,9                              | 7.4         | 164.4                         | SUNA   |
| MEDIA 13.7   0.6   0.8   1.8   17.7   139.3   118.2   111.9   112.6   77.5   17.2   2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 613.8     | 2.5                           | 17.2            | 77.5                           | 1 112.6 | 1 111.9 | 118.2           | 139.3   | 17.7  | 1.0   | 0.8                              | 0.6         | 13.7                          | MEDIA  |

### SUBGERENCIA DE ADMINISTRACION DEL AGUA

|         |       | LATITUD<br>LONGITU<br>ALTITUD | Ð       | 19135126<br>10213512 |       |           |            | PITACION<br>ME. | l       |          | CONTROLI<br>ESTACIO<br>ESTADO |             | LOS LIM<br>MICHOAC |         |         |
|---------|-------|-------------------------------|---------|----------------------|-------|-----------|------------|-----------------|---------|----------|-------------------------------|-------------|--------------------|---------|---------|
| 1       | ANOS  | ENERO                         | FEBRERO | MARZO                | ABRIL | : MAYO    | JUNIO      | 1ULIO           | IAGOSTO | ISEPTIEN | 10CTUBRE                      | NOVIEW      | DICIENG            | ; ANUAL | -<br> - |
| ţ,      | 1955  | 0.0                           | 0.0     | 0.0                  | 0.0   | 0.5       | 137.5      | 373.9           | 299.6   | 1 422.3  | 104.4                         | 34.4        | 4.2                | 1376.8  | ì       |
| ŀ       | 1956  | }                             | 0.0 :   | 0.0                  | 0.0   |           | 227.4      |                 |         | 219.5    |                               | 4.5         | 0.0                | 819.6   | ł       |
| ì       | 1957  | 0.0                           | 0.0 :   |                      | 0.0   | 5.0       | : 115.0    | 98.5            | 1 173.2 | 227.1    | 81.2                          | 32.0        | 0.0                | 732.0   | í       |
| ŀ       | 1958  | 79.0                          | 1 4.2 1 | 0.0                  | 0.0   | 19.2      | 264.6      | 231.0           | 188.1   | 1 268.3  | 147.9                         | 87.5        | 51.2               | 11341.0 | į       |
| į       | 1959  | 6.5                           | 1 0.0 ; | 0.0                  | 143.9 | 45.0      |            |                 |         | 166.9    |                               |             | 0.0                | 1234.5  | 1       |
| 1       | 1950  | 1 5.5                         | 1 0.0 1 | 0.0                  | 0.0   | 3.0       | 1 39.2     | 240.5           | 191.9   | 253.0    | 97.9                          | 36.3        | 8.8                | 876.1   | ţ       |
| ł       | 1961  | 24.3                          | 0.0 ;   | 1.5                  | 0.0   | 21.4      | 206.7      | 211.9           | 170.5   | 208.7    | 51.3                          | 1.0         | 0.0                | 897.3   | ł       |
| ŀ       | 1962  | 0,0                           | 1 0.0 ( | 0.0                  | 12.7  | 0.0       | 210.8      | 147.3           | 242.2   | 221.4    | 50.0                          | 1.7         | 8.0                | 894.1   | ;       |
| ļ       | 1963  | 1 0.0                         | 1 0.0 ; | 5.6                  | 1.3   | 12.1      | 1 109.3    | 184.9           | 144.3   | 135.5    | 196.2                         | 24.1        | 26.3               | 837.6   | ŧ       |
| ļ       | 1964  | 22.8                          | 4.1     | 4,3                  | 0.0   | 2.0       | 181.9      | 231.2           | 115.7   | 228.8    | 16.4                          | 1 39.4      | 23.4               | 870.0   | į       |
| ŧ       | 1965  | 10.0                          | 19.2    | 0.0                  | 10.5  | 7.5       | 174.6      | 147.6           | 344.4   | 282.0    | 110.3                         | 0.0         | 5.0                | 11111.1 | [       |
| ļ       | 1966  | 10.8                          | 13.4    | 0.9                  | 5.0   | 81.2      | 187.0      | 208.2           | 112.4   | 167.5    | 61.1                          | 1 1.0       | 0.5                | 849.0   | ţ       |
| ŧ       | 1967  | 93.4                          | 0.0 1   | 0.0                  | 0.4   | 1 34.8    | 361.1      | 107.7           | 265.9   | 324.9    | 70.3                          | 2.7         | 4.5                | 1265.7  | ţ       |
| 1       | 1968  | 0.3                           | 20.4    | 59.6                 | 0.5   | 15.2      | 136.7      | 185.4           | 116,7   | 208.5    | 65,8                          | 28.3        | 42.1               | 879.5   | į       |
| ŀ       | 1969  | 2.8                           | 8.0 (   | 10.2                 | 0.0   | 71.0      | 54.4       | 179.2           | 232.9   | 1 194.3  | 100.0                         | 0.0         | 10.6               | 863.4   | ł       |
| ľ       | 1970  | 18.2                          | 15.0 1  | 0.0                  | 0.0   | 3.0       | 228.7      | 265.0           | 241.9   | 1 261.7  | 52.0                          | 23.5        | 0.0                | 11109.0 | ŀ       |
| ţ       | 1971  | 0.0                           | 0.0     | 1.3                  | 0.0   | 6.9       | 160.3      | 131.2           | 1.77,1  | 1 301.3  | 130.4                         | 10.5        | 4.0                | 923.0   | 1       |
| ŧ       | 1972  | 4.4                           | 1 0.0 1 | 5,4                  | 0.0   | 76.2      | 285.3      | 237.1           | 225.1   | 169.4    | 40.9                          | 55.4        | 0.0                | 11099.3 | ŀ       |
| i       | 1973  | 8.8                           | 109.0 } | 0.0                  | 51.7  | 74.9      | 111.6      | 323.0           | 1 188.7 | 242.0    | 299.6                         | 0.0         | 15.B               | 1424.1  | F       |
| ŀ       | 1974  | 0.0                           | 1 0.0 1 | 4.0                  | 0.0   | 30.5      | 169.4      |                 |         | 179.4    | 32.1                          | 37.0        | 17.6               | 849.0   | ¦       |
| 1       | 1975  | 27.5                          | 1 0.0 1 | 0.0                  | 0.0   | 24.3      | 145.7      | 225.4           | 169.7   | 274.1    | 75.9                          | 1.8         | 0.8                | 945.2   | ŀ       |
| ŧ       | 1976  | 0.0                           | 1 0.5 1 | 0.0                  | 4.3   | 0.0       | 176.5      | 323.0           | 239.4   | 1 129.5  | 151.5                         | 96.B        | 4.0                | 11124.5 | ł       |
| ţ       | 1977  | 6.2                           | 1 3.5 ; | 0.0                  | 5.8   | 17.5      | ; 304.3    | 175.8           | 129.4   | 227.3    | ; 55.1                        | 85.2        | 7.8                | 11017.9 | ŀ       |
| ł       | 1978  | 1 5.8                         |         | 3.7                  |       | -         | 156.7      |                 |         | 242.2    |                               |             |                    | 1 975.2 | ŀ       |
| ļ       | 1979  | 0.0                           | 14.5    | 0.0                  | 0.0   |           |            |                 |         | 1 169.6  | 1 6.6                         | 0.0         | 18.9               | 1.228;  | ŀ       |
| Ė       |       | 174.1                         |         |                      |       |           | 107.3      |                 |         |          | 110.5                         |             |                    | 11036.3 |         |
| 1       | 1981  | B0.2                          | 1 3.3   | 0.5 }                | 11.2  | 14.3<br>! | 221.2<br>! | 248.2           | 130,9   | 60.3     | : 68.9<br>!                   | : 33.9<br>: | 8.2                | 1 901.1 | 1       |
| ì       | SUMA  | 5B0.6                         | 225.0   | 97.2                 | 247.9 | 746.2     | 4815.6     | 5700.2          | 5036.2  | 15975.7  | 2712.3                        | 681.8       | 268.7              | í       | 1       |
| i,<br>1 | MEDIA | 22.3                          | .ii     | 3.7                  | 9.2   | 27.6      | 178.4      | 211.1           | 193,7   | 221.3    | 100.5                         | 25.3        | 10.0               | 1011.4  | 1       |

# SUBGERENCIA DE ADMINISTRACION DEL AGUA

 LATITUD
 19\*35 '24 ' '
 CONTROLADA POR

 LONSITUD
 102\*35 '26 ' '
 EVAPORACION
 ESTACION
 LOS LIMONES

 ALTITUD
 mm.
 ESTADO
 MICHOACAN

|       |        | FEBRERO        |        |         |         |        |         |             |         |        |        |        | ANUAL   |
|-------|--------|----------------|--------|---------|---------|--------|---------|-------------|---------|--------|--------|--------|---------|
| 1055  | 172 9  | 1 174.7        | 714 7  | 1 270 0 | 1 205 1 | 151.7  | . 177 6 | 1 121 3     | 1       | 90.2   | 92 1   | . A& T | 1744 3  |
|       |        | 138.1          |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 140.8          |        |         |         |        |         |             |         |        |        |        |         |
| _     |        | 1 115.8        |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 1 133.9        |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 1 142.0        |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 137.3          |        |         |         |        |         |             |         |        |        |        | 1659.5  |
|       |        | 137.6          |        |         |         |        |         |             |         |        |        |        | 11761.5 |
|       |        | 142.0          |        |         |         |        |         |             |         |        |        |        | 1640.0  |
|       |        | 138.3          |        |         |         |        |         |             |         |        |        |        | (1569.1 |
|       |        | 110.2          |        |         |         |        |         |             |         |        |        |        | 11485.1 |
|       |        | 129.6          |        |         |         |        |         |             |         |        |        |        | 11626.2 |
|       |        | 116.8          |        |         |         |        |         |             |         |        |        |        | 1464.6  |
|       |        | : 118.7        |        |         |         |        |         |             |         |        |        |        | 1522.5  |
|       |        | 128.4          |        |         |         |        |         |             |         |        |        |        | 11674.9 |
|       |        | 122.1          |        |         |         |        |         |             |         |        |        |        | 11740.9 |
|       |        | 142.2          |        |         |         |        |         |             |         |        |        |        | 11758.5 |
|       |        | 153.8          |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 153.2          |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 129.4          |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 119.9          |        |         |         |        |         |             |         |        |        |        |         |
|       |        | 1 155.0        |        |         |         |        |         |             |         |        |        |        | 11666.0 |
|       |        | 131.3          |        |         |         |        |         |             |         |        |        |        | 1580.9  |
|       |        | 108.9          |        |         |         |        |         |             |         |        |        |        | 11662.0 |
|       |        | 125.7          |        |         |         |        |         |             |         |        |        |        | 1918.6  |
|       |        | 121.7          |        |         |         |        |         |             |         |        |        |        | 1779.8  |
|       |        | 132.5          |        |         |         |        |         |             | _       |        | _      |        |         |
|       |        | 1              |        |         |         |        |         |             |         |        |        |        |         |
| SUMA  | 2806.4 | 3599.9         | 5402.2 | 6284.9  | 16329.0 | 4401.4 | 13196.9 | 13005.1     | 12648,2 | 2695.9 | 2398.5 | 2226.2 | ,       |
| MERIA | i      | 133.3          | 200.4  | 070.5   | 1 024 4 | 1      |         |             | i       |        |        |        | i       |
|       |        | : 133,3 .<br>} |        |         |         |        |         | ( 111.3<br> |         | ;      |        |        |         |

# SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS COMISION NACIONAL DEL AGUA GERENCIA REGIONAL LERNA-BALSAS

FEDHA: 11-25-1992

## CALCULU DEL CLIMA POR EL (< 29 SISTEMA DE THORNTHWALTE >>

UBICADA EN EL ESTADO DE NICHOACAN

ESTACION: BUENAVISTA DE TOMATLAN

LATITUD : 17 g 13 ' 0 'N
LONGITUD: 102 g 35 ' 9 'NG
ALTITUD : m5ng

PERIODO: 1969-1980

| CONCEPTO |       |                   |       |       | M     | Ε     | ã E   | 5     |       |       |       |       | CLAVE | anlial |
|----------|-------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|          | ENE.  | FEB               | FAM   | ABR   | MAY   | JUN   | JUL   | A60   | SEP   | OCT . | NOV   | DIC   |       |        |
| TE (9C)  | 24.90 | 25.80             | 27,30 | 28.70 | 30.20 | 28.90 | 27,50 | 27,20 | 27.10 | 27.30 | 26.30 | 25.20 | TEA   | 27.20  |
| PR(cm)   | 1.37  | 0.06              | 0,08  | 0,18  | 1,77  | 13.93 | 11.82 | 11.19 | 11.26 | 7.75  | 1.72  | 0.25  | PRA   | 61.38  |
| ICH      | 11.37 | 11.99             | 13,07 | 14.09 | 15.22 | 14.24 | 13.21 | 12.99 | 12,92 | 13.07 | 12.35 | 11.57 | ICA   | 156.09 |
| ÉV(c∌)   | 10.25 | 11.81             | 13,87 | 14.56 | 15.35 | 14.67 | 13,97 | 13,82 | 13.77 | 13.87 | 12,75 | 10,76 |       |        |
| FC       | 0.75  | 0.90              | 1.03  | 1.05  | 1.13  | 1.10  | 1.14  | 1.10  | 1.02  | 1.00  | 0.93  | 0.95  |       |        |
| EP(ca)   | 9.74  | 10.63             | 14.28 | 15.29 | 17.34 | 16.13 | 15.92 | 15.20 | 14.05 | 13.87 | 11.86 | 10.22 | EPA   | 164.53 |
| Mi(ce)   | 0.00  | 0.00              | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |       |        |
| HA(ca)   | 0.00  | 0.00              | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |       |        |
| DA(ca)   | 0.00  | 0.00              | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | DAA   | 0.00   |
| DE (ca)  | 0.37  | 10.57             | 14.20 | 15.11 | 15.57 | 2.20  | 4.10  | 4.01  | 2.79  | 6.12  | 10.14 | 9.97  | ĐEA   | 103.1  |
| ER(cm)   | 1.37  | 0.06              | 0.09  | 0.18  | 1.77  | 13,93 | 11.82 | 11.19 | 11.26 | 7.75  | 1.72  | 0.25  |       |        |
| ES(ca)   | 0.00  | 0.00              | 0.00  | 0.00  | 9.00  | 0.00  | 0.00  | 9.00  | 0.00  | 0.00  | 0.00  | 0.00  |       |        |
| RP .     | -0.86 | -0. <del>99</del> | -0.99 | -0,99 | -0.90 | -0.14 | -0.26 | -0.26 | -0.20 | -0,44 | -0.85 | -0.98 |       |        |

|                              |             | * FORMULA DEL ELIMA *    |       |                                         |  |  |  |
|------------------------------|-------------|--------------------------|-------|-----------------------------------------|--|--|--|
|                              |             | CONCEPTO                 | CLAVE | DESCRIPCION                             |  |  |  |
| IN = 100 x DAA / EPA =       | 0.00 X      | CATEGORIA DE HUMEDAD     | ₽H    | SECO:                                   |  |  |  |
| IA = 100 x DEA / EPA =       | 62.69 ¥     | resimen de humedad       | SA    | Perjeaa o nula demasta de agua          |  |  |  |
| IP = IH - 0.6 ( IA ) =       | ~37.62 %    | Categoria de teoperatura | . TA  | CAL 100                                 |  |  |  |
| CT = 100 x SUM ( EPN ) / EP/ | 1 = 29.64 X | regimen de temperatura   | VA    | CONCENTRACION NORMAL DE CALOR EN VERANO |  |  |  |

# SUBSERENCIA DE ADMINISTRACION DEL ABBA

# ESCURRINSENTO MENSUAL TRANSPORTADO

| AKOS  | ENERD      | FERRERO   | MAR29     | ABRIL      | : MAYO     | : CONTO     | 79,19     | ! ASCSTO          | SECTIENDEE  | DOTUBAS            | SMOVSEMBGE        | BREF BESTO         | ANUAL               |
|-------|------------|-----------|-----------|------------|------------|-------------|-----------|-------------------|-------------|--------------------|-------------------|--------------------|---------------------|
| 1955  | /3425.323  | 12959.045 | /3058.794 | 12733.665  | /1888,763  | /2230.750   | 3505,49   | 7956.209          | 22839.860   | 4312.398           | 3161.565          | :455), <b>G</b> 87 | 73492.85            |
| 1956  | 14778.744  | 43627.874 | 13142.367 | (2459.6B)  | 13058,794  | 15959,478   | 17521,825 | 18073.211         | :10514.099  | 15281.852          | 14393,570         | 4412,696           | :54111,69           |
| 1957  | (3438,690  | 12745.175 | .2744.557 | 12203.108  | 11853.662  | 13299.809   | 13075,509 | :4429,401         | 16421.6987  | 13760.913          | 12361.626         | 12941,791          | (39276, 93          |
| 1958  | 13542.285  | 2207.206  | 11930.550 | 73431.535  | 11297.062  | 13754.342   | 78084,159 | 15451,883         | 112325.760  | 18891,555          | r6551.983         | 4579.B34           | 159347.05           |
| 1959  | 13659.248  | 2808.073  | 12557.352 | ;3089,527  | 12691,070  | 15159,995   | 16251.306 | 19978,489         | 15971.7204  | 112352.19          | 159201247         | £382,340           | 165721.55           |
| 1960  | 15129.631  | 13940.351 | 14028,248 | :3184.581  | [2941.79]  | '3589,022   | 15793,294 | 14913.840         | 17214,2900  | 3961.725           | 17976,294         | 2191,356           | (5)/55.16           |
| 1951  | 12990.992  | 12355.159 | 12223.058 | 11973.415  | /1821.904  | 14526, 203  | 14385,024 | 15532,573         | 15726.1405  | 12809.073          | 12539.559         | 2557,540           | 41:39,57            |
| 1982  | 12840,512  | :2536.324 | 120/2.625 | 2039.117   | 11880.763  | 13720.373   | 14811,821 | :4897.413         | 100805,259  | 6117.563           | 19188,581         | 3910, 958          | 148023.30           |
| 1963  | :3174.690  | 2535.324  | 12574.067 | 12151.346  | 12005.766  | 12911.596   | 18123.355 | 17471.481         | (B265,7000) | 18557.938          | 14050.960         | :4230.854          | :55a:2.98 .         |
| 1964  | 4544.819   | 2908.361  | 2774.644  | /2216.048  | 11922.193  | :3235.107   | 15031,131 | :3 <b>827.671</b> | 19168.6468  | 14028,243          | 13121.978         | 3744, 197          | 145521.85           |
| 1965  | 13141.272  | 12777.879 | 12557.352 | \$1811.660 | 11755.045  | 13009.650   | :3576,950 | 110998.28         | 18103.9446  | 13 <b>9</b> 94,818 | 12459.581         | 2490,493           | 146675,03           |
| 1966  | 12623.295  | 12445,741 | .2139.494 | 12151.346  | \$2691.076 | 14628.233   | 17254,199 | 15917.055         | 16664.3217  | 97679.3 <u>2</u> 7 | :3283.6 <b>34</b> | 3960,812           | 150627,44           |
| 1957  | 14778,744  | 12898.656 | 12824.789 | 1221a.048  | 12691.070  | 18530 - 402 | 4429.401  | :14878.10         | 114088,893  | 19743,530          | 13995.357         | 4044,962           | 174517.96           |
| 1968  | 13742,792  | 3877.845  | 4479.545  | 12652.788  | 12757,929  | 14432.397   | 15482,429 | 17220,750         | 112050,778  | 17076.898          | 4173.288          | 4245.539           | :52152.65           |
| 1969  | 13692.665  | 3049.628  | 13142.367 | 12792.192  | 12707.795  | 13865.953   | 15699.720 | 1                 | 140449.397  | 4546.592           | 12911,598         | 13978, 104         | \$ <b>4</b> 6928,10 |
|       | <u> </u>   | /         | l         | ;          | 1          |             | /         | !                 | 1           | ,                  |                   | !                  | 11                  |
| SUMA  | (\$5503.6) | 143674.38 | 42249.80  | 35096.06   | 33972.67   | 63797.99    | 92315.41  | 102444.5          | 1149511.50  | 91964,40           | 155385.04         | 59851.98           | 924566.3            |
| MEDIA | 3468.975   | 12729.649 | 2840.617  | 2193,504   | 12123.292  | 13987.371   | 15769,717 | 5529.635          | 9344.4062   | (5747.775          | 3461,563          | 3565.747           | 51535.39            |
|       | .i         |           | !         | ·          |            | !           | 11        | :                 | i           | !                  | '                 |                    |                     |

Las fórmulas se consideran válidas para valores de la precipitación anual entre 350 y 2250 mm. Sin embargo, se aconseja emplearlas con cautela cuando la precipitación tiene un valor cercano a alguno de los límites señalados.

Se multiplicó cada C por el % que le corresponde. Se sumaron los productos obtenidos, ya divididos entre 100 y la suma será el coeficiente de escurrimiento de la cuenca.

En la misma forma se continuó el cálculo para cada uno de los coeficientes de escurrimientos anuales, de acuerdo al valor de la precipitación anual.

Para el cálculo del volúmen escurrido anual, la fórmula que se utilizó fué la siguiente:

Ve = Ce x Ac x Pm

donde:

Ve = Volúmen escurrido en Mill. de m3.

Ce = Coeficiente de escurrimiento.

Ac = Area de la cuenca en km2.

Pm = Precipitación del centro de gravedad de la cuenca en metros.

Además, se obtuvieron los volúmenes escurridos mensuales tomando de base los escurridos anuales.

3,4,2 METODO DE TRANSPORTE DE INFORMACION HIDROMETRICA

Cuando la estación de aforos no se ubica en la misma corriente, pero está dentro de la misma cuenca hidrográfica, estien son adyacentes, se considera la ecuación:

Ex Escurrimiento anual estimado, en Miles de m3.

Ax Area de la cuenca sin datos, en Km2.

Ad Area de la cuenca Est. Hidr., en Km2.

E Escurrimiento anual en la Est. Hidr., en Miles de m3.

Pma Precipitación media anual, en mm.

#### 3.5 FUNCIONAMIENTO DE VASO

## 3.5.1 CAPACIDAD DE AZOLVES

Como no se cuenta con registros de sólidos en suspención, se recurrió a la estimación de donde se dedujo el aporte de material que acumulará la obra en su vida útil. El cálculo empírico de esta capacidad se efectuó mediante la fórmula:

Volúmen de sedimentos = V.E. x N x 0.001

V.E. = Volúmen de escurrimiento medio anual

N = Años supuestos de vida útil de la obra

0.001 = Factor de azolve por año por Mm3.

## 3.5.2 EVAPORACION NETA

La evaporación neta, es la evaporación total mes a mes de cada año, afectada por un coeficiente reductor de 0.77 que multiplica a un factor igual a (1-Ce). Donde Ce es el coeficiente de escurrimiento anual correspondiente, cuadro 7.

#### 3.5.3 REGIMEN DE DEMANDAS PARA RIEGO

Por demanda entendemos los volúmenes mensuales o anuales que es necesario obtener de la fuente de abastecimiento, para satisfacer las necesidades de agua de los cultivos de toda el área bajo riego.

# 3.5.3.1 PROGRAMA DE CULTIVOS

| CULTIVO    | % AREA DE | DE CULTIVO |  |  |  |  |
|------------|-----------|------------|--|--|--|--|
| COLITYO    | P-V       | C-1        |  |  |  |  |
| SORGO      | 40        |            |  |  |  |  |
| MAIZ       | 40        |            |  |  |  |  |
| FRIJOL     | 20        |            |  |  |  |  |
| CHILE      |           | 20         |  |  |  |  |
| JITOMATE   |           | 20         |  |  |  |  |
| CALABACITA |           | 10         |  |  |  |  |
| SANDIA     |           | 10         |  |  |  |  |
| <u> </u>   | 100       | 60         |  |  |  |  |

# SECRETARIA DE AGRICOLIVRA Y RECURSOS ELPRADUICOS SUBSECRETARIA DE IMPERESTRICTUBA REDRAULICA DIRECCION GENERAL DE SEGDIBLERTO Y CONTROL DE OBEAS HIDRAULICAS COORDINACION REGIONAL CENTRO

RVAPORACIONES ESTAS MENSOALES EN EM

FECHA: 11-23-1992

CDADBO No. 7

PROTECTO: LA LOMA

MONICIPIO: JILOTLAN DE LOS DOLORES ESTADO : JALISCO

PRRIODO: 1955 - 1981

| 110    | 188     | PIB      | MAR       | ABR .    | 847     | JUN      | 39L      | AGO      | SEP             | OCT      | MOV            | DIC     | ABDAL    |
|--------|---------|----------|-----------|----------|---------|----------|----------|----------|-----------------|----------|----------------|---------|----------|
| 1955   | 102.333 |          |           |          |         |          |          |          |                 |          | 44.850         |         |          |
| 1956   | 54.623  | 106.337  | 164,826   | 178.717  | 20.684  | -85.542  | -63,010  | -60.049  | -98.158         | 19.982   | 74.439         | 82.544  | 425.175  |
| 1957   | 98,560  | 108.416  | 161.981   |          |         |          |          |          | -117, 260       |          | 41.839         | 75.306  |          |
| 1958   | -2.525  | 85,892   | 163, 858  |          |         |          |          |          |                 | -54.850  | -3.685         | 18.761  | 190.552  |
| 1959   | 85.526  | 103.103  | 154.308   | 21.291   | 111,041 | -79.285  | -61.908  | -64,200  | -46.555         | -150,863 | 60.06 <b>5</b> | 72.511  | 185.129  |
| 1960   | 34.613  | 109.340  | 162, 393  |          |         |          |          |          | -146.057        |          | 31.197         | 43.549  | 577.599  |
| 1951   | 56.462  | 105,721  | 153,897   | 186, 109 |         |          |          |          | -110.330        |          | 68.307         | 67,683  | 525.035  |
| 1962   | 87.318  | 105.952  | 171.248   | 179.607  |         |          |          |          | -120.464        |          | 67,026         | 53.884  | 605.874  |
| 1963   | 85.393  | 109.340  | 152.955   |          |         |          |          |          | -43.343         |          | 37.345         | 41.165  | 351 944  |
| 1984   | 47.933  | 193. D36 | 140.598   | 178.255  |         | -37.078  |          |          |                 | 54, 865  | 38, 335        | 57.417  | 475, 145 |
| 1965   | 64,562  | 59,296   | 106,260   | 162. D47 |         |          |          |          | -160,827        |          | 61.445         | 61.999  | 243, 132 |
| 1966   | 71.412  | 88.464   | 153.316   | 172.180  |         | -44.D55  |          |          | -67.6D <b>9</b> |          | 67.531         | 63.718  | 534, 422 |
| 1967   | -10.811 | B9.936   | 142.065   | 161, 153 |         | -178.105 |          |          | -193, 198       | 11, 248  | 59.930         | 53.350  | 128.308  |
| 1968   | 79.239  | 74.236   | 71.594    | 173,214  |         | 15.564   |          |          |                 | 7.858    | 38.174         | 17,941  | 402.384  |
| 1969   | 71.481  | 92,120   | 141.007   |          |         |          |          |          | -87.350         |          | 68.828         | 54.597  | 561.412  |
| 1970   | 53.556  | B1. B58  | 160.545   | 190.113  |         |          |          |          | -140.504        |          | 17,479         | 71, 148 | 441.525  |
| 1971   | 84, 854 | 109.494  | 162, 308  | 188. 727 |         |          |          |          | -177.739        |          | 55.599         | 55.034  | 582.878  |
| 1972   | 78.818  |          | 160.695   |          |         |          |          |          | -62.397         |          | 17.468         | 72.457  |          |
| 1973   | 94,031  |          | 159.467   |          |         |          |          |          | -103.570        |          | 62.986         | 50.537  | 263.651  |
| 1974   | 79.002  |          | - 139.376 | 165.242  |         |          |          |          | -72.203         |          | 46.721         | 48.954  | 549.821  |
| 1975   | 42.093  |          | 152, 229  | 173.712  |         |          |          |          | -156, 124       |          | 80.044         | 75, 795 | 447.711  |
| 1976   | 93.170  | 118,946  | 163.317   |          |         | -8.726   |          |          |                 | -43,929  | -17.436        | -0.154  | 373.628  |
| 1977   | 12.592  |          | 158.928   | 155.080  |         |          |          |          | -104.324        |          | -3.960         | 35.932  | 379.766  |
| 1978   | 69, 423 |          | 147.316   | 187.110  |         |          |          |          | -119.B93        |          | 66.580         | 68.259  | 471.797  |
| 1979   | 82.236  |          |           | 189.343  |         |          |          |          |                 |          | 83.314         | 55.977  |          |
| 1980   | -56.196 |          |           | 172.912  |         |          |          |          |                 |          | 43.933         | 57, 893 | 520.328  |
| 1981   | 8.084   |          |           | 187.633  |         |          |          |          | 36.781          | 19.857   | 52.273         | 69.663  | 608.316  |
| EDIOS  | 61.856  | 95.996   | 150.922   | 171.928  | 157.834 | -20.737  | -62,043  | -73.225  | -106.921        | -4.991   | 47.720         | 55.303  | 454.542  |
| . STD. | 37.110  | 19.094   | 29.276    | 33.196   | 38.851  | 68.512   | 45,460   | 18.736   | 57. D35         | 59.086   | 25.538         | 19, 733 |          |
| ees    | 102.333 | 134.519  | 171.248   | 200.893  | 297.591 | 127.239  | 7.269    | 3.518    | 35.761          | 98.354   | 83.314         | 82.544  |          |
| EE08   | -56.196 | 34.974   | 71.594    | 21,291   | 20.684  | -178.165 | -186,580 | -208.157 | -243, 174       | -150.869 | -17.438        | -9.154  |          |

COMISION NACIONAL DEL AGUA:

ESTACION BASE: BUFBAVISTA DE TOMATLAN PROYECTO: IA LOMA LangituD: MUNICIPIE: SHLOTLAN DE LOS DOLCRES LATITUD :COLTIVO: HOULTIVO: TEXPERATURAL(CC + 17.80)[ P | F | PRECIPITACION | ! LAMINA DE RIEGO EN CME. | | LAMINA DE RIEGO EN CMB. 21.67 DEC. | CMS. | Php | JEFECTIVAL KE | U.C. IJ x U.C. | 1 Kc 1 U.C. 13 x U.E.1 ; | cms | cms | cms, | cms, | NETA | CALCULADA: BRUTA | | cms. | cms. | NETA | CALCULADA: BRUTA | | cms. | cms. | cms. | NETA | CALCULADA: BRUTA 1 (4) 1 (5) 1 (6) 1 (7) 1 (8) 1 (9) 1 (10) 1 (11) 1 (12) 1 (13) 1 (8) 1 (9) 1 (10) 1 (11) 1 (12) 1 (13) 1 (8) 1 (9) 1 (11) 1 (12) 1 1 (12)/n 1 115)x(8) ) { (0) - (7) } | (12)/n | 1(5)x(9) 1(10)-(7) ( 17101-(7) | 1(5)x(9)1 0.00 0.00 0 ! 1 0.00 1 0.00 1 0.00 1 0 : 1 0.00 1 0.00 ( 0.00 ( 1 0.00 1 0.00 1 0.00 1 2.01 | 7.28 | 14.65 | 0.00 | \*F & B A E B 91 25.80 % 0.00 1 0.1 -1 0.00 | 5.00 t 0.00 : 6 5 0.00 0.00 1 2.08 | 8.41 | 17.50 | 0.00 | 0.00 1 1 6.00 1 0.00 1 " MARZO 1 27.30 1 0.00 0.00 (  $0.50 \pm$ 0.60 0.00 ; 0.00 1 0.00 1 0.00 1 0.00 " ABRIL ! 2.45 | 8.51 | 18.26 | 0.00 | 28.79 0.00 0.00 1 0.00 3 1 0.00 1 0.00 3 \* MAYE ! 2.22 | 9.11 | 20.16 | 0.00 | 0.00 1 1 0.00 1 0.00 1 0.00136.202.26 : 0 : 0.63 :12.16 : 9.25 | 2.25 ! 0.00 1 0.00 : 2.16 : 8.97 | 19.33 | 8.91 | 7.59 | 0.44 | 8.51 | 7.83 | 0.23 i 0.00 : 0 | 0.50 | 9.57 | 9.96 1 1 38816 1 28,90 ( 18 | 1.02 | 19.62 | 15.89 | 10.75 10.00 11.00 1 18 1 0.85 116,35 1 15.84 11.20 1 2.09 | 9.20 | 19.23 | 6.24 | 5.64 | 0.95 | 18.27 | 15.81 | 11.17 11.00 : " 10 L 10 H 27.50 1 14.00 1 23 | 1.07 | 19.82 | 16.05 | 10.00 ( 15.66 3 14.46 2.08 | 8.92 | 18.52 | 6.74 | 6.05 | 0.98 | 18.06 | 16.62 | 10.56 11.00 % 18 | 1.08 | 19.91 | 20.51 | \* 4885181 27.20 1 10.61 f1.00 l 18 | 0.75 | 12.97 | 10.42 | 6.25 ! 5.00 ! 5.09 1 5.00 8 | 0.92 | 15.70 | 5.56 | 0.68 | 11.58 | 10.65 | \* SEPTIEMBRE 1 27.10 1 7.07 | 8.28 | 17.15 | 5.14 | 0.00 0.00 0.00 0.60 4 0,000 0.90 0.00 0.00 1 1 0.00 1 2.08 | 3.19 | 17.05 | 1.75 | 27,30 1 #0 0 7 0 P R E1 1 0.00 1 0.00 1 0.60 1 0.00 1 1 0.00 1 0.00 } 2.04 : 7.63 : 15.53 : 0.00 : 0.00 1 0.00 0.00 " MOVIEMBRE ! 26.58 3 1 0.00 1 0.00 0.00 1 1 0.00 0.00 1 1.98 / 7.71 | 15.30 | 0.00 | 0.00 | 1 0.00 1 0.00 1 1 DIGIEMBRE : 25.20 ( 74.24 36.42 74.24 74.24 x = 0.70 = 0.81----x 0.55 = 1.03 0.70 = 0.9264.46 61.53 56.42 P=PORCIENTO DE HORAS-LUZ (VER TABLAS) f=FACTOR DE EVAPOTRANSPIRACION Poh=PRECIPITACION PROBABLE SUM F Kc=CBEFICIENTE DE DESARROLLO DE CADA CULTIVO Ko-COEFICIENTE GLOBAL DE DESARROLLO SUM 9.0. J=FACTOR DE CORRECCION PARA EL U.O. U.C.=USO CONSUNTIVO=Kc x + n=EFICIENCIA DE RIEGO

F0 1.30 F0 77.06 27.00 F8.53

4.93

55.00

27.37 25.00

0.91

#### CONISION î E L ESTUDIES D E

N 3

PROYECTO: LA LOMA

MUNICIPIU: JILDTLAN DE LOS DOLORES

ESTADO: JALISCO ESTACION BASE:

BUENAVISTA DE TOMATLAN

LONGITUD: LATITUD

| ·/Mys:<br>Preservation | nenesnueseses<br>Autidin       | •92EE3        | h:RFER         | 811468              | ###################################### | dasydaa                                 |             |                 | ren e e e e e e e e e e e e e e e e e e |               | a e e e e e e e e e e e e e e e e e e e |           | 5 2 8 M & & X & X | 202283 |          | * P E D Z P W B M   |       | <br>     |                   | Mil.i<br>Peaser |                | ********     | ланита ф <b>ице</b> л | a <b>m d</b> s a <b>e</b> d s e a n           | 1 1 1 2 2 2 2 5 |
|------------------------|--------------------------------|---------------|----------------|---------------------|----------------------------------------|-----------------------------------------|-------------|-----------------|-----------------------------------------|---------------|-----------------------------------------|-----------|-------------------|--------|----------|---------------------|-------|----------|-------------------|-----------------|----------------|--------------|-----------------------|-----------------------------------------------|-----------------|
|                        | TEMPERATURA;                   | ire i         | <b>ተ</b> ፕ ሮስነ | 1 25                | ;                                      | i<br>i Dore                             | 70178010    | EULTI           | V9:                                     | EHITE         |                                         |           |                   | ICULT: | 140:     | JITOMATE            |       | j        |                   | !CUL1           | TIVO:          | CALABACI     | TA                    |                                               |                 |
| 8 8 8                  | En :                           |               |                | į.                  | 1                                      | i                                       |             |                 |                                         | <br> J x U.C. |                                         |           |                   |        |          |                     |       |          |                   |                 | t   V.C.       |              |                       | DE RIEGO EN                                   | CMS.            |
| ******                 |                                |               |                | , <b>41</b> 0,<br>1 |                                        | CRS                                     | E C#5       | :               | Cæs.                                    | ; cos. :      | META                                    | CALCULADA | BRUTA             | !      | : cas. i | €#5. }              | NETA  | CALCULAT | A: BRUTA          | -;              | : 285. }       | CAS.         | NETA :                | CALCULADA!                                    |                 |
| (1)                    | (2)                            | (3)           | }              |                     | 1 (5)<br>1(3)×(4)                      |                                         | ( (7)       | <b>: (5</b> )   |                                         | ; (10) ;      |                                         | (12)      |                   | (8)    |          | (10)                |       | (12)     |                   | (8)             |                | (10)         |                       | (12)                                          |                 |
| ENERS                  | 24.90                          |               | 1.97           | 7.79                | ; 15,35                                | : 0.00                                  | ; 0.0       | 1,05            | 18.12                                   | 1 11.20 1     | 11.28                                   | 11.00     | ! <u>1</u> 8      | 1 0.95 | 114.58   | 13.71               | 13.71 | 14.00    | ) } 23            | 1 0.7           | 72  10.98      | 7.55         | 9,55                  | 10.00 1                                       | 17              |
| EBRER                  | 0 <b>25.8</b> 0 1              |               | 2.01           | 7.29                | 14.65                                  | 0.00                                    | 0.00        | 11.00           | 14.65                                   | 10.25         | 10.25                                   | 10.00     | 1 17              | 1 0.98 | 114.35 1 | 13.49               | 13.49 | : 13.00  | 22                | 1               | 1 0.00 1       | 0.00         | 0.00                  | ;                                             |                 |
| MARZO                  | -                              |               | 2,09           | 8.41                | 17.50                                  | 0.00                                    |             |                 | 1 14,00                                 |               | 9.80                                    |           | 17                | 0.9    | 114.00   |                     |       | - 1      |                   | -               | 1 0.00 1       | 0.00         |                       | 1                                             |                 |
| ABRIL                  | 29.70                          |               |                |                     | 1 18.26                                |                                         |             |                 | 0.00                                    |               | 0.00                                    |           | . 0               | •      | 1 0.00   | 0.00 /              | •     | 1        |                   |                 | 0.00           | 0.00         |                       |                                               |                 |
| MAYO                   | 30.20 1                        |               |                |                     | 20.19                                  |                                         |             |                 | 0.00                                    |               | 0.00                                    | :<br>•    | . 0               | :      | 0.00     | 0.00 1              |       |          | ; 0               | ;               | 1 0.00 1       | 0.00         |                       |                                               |                 |
| JUNIO.<br>Julio        | 28.90 /<br>27.50 /             |               |                |                     | 19.33                                  |                                         |             |                 | 1 0.00                                  |               | i                                       | j<br>1    | ; <b>v</b><br>: 0 | j<br>I | 1 0.00 1 | 0.00 ;<br>0.00 ;    |       |          | : 1)              | i               | 1 00.00 1      | 0.00<br>0.00 |                       | i .                                           |                 |
| 8 5 5 T S              |                                |               |                |                     | 1 18.52                                |                                         |             |                 | 0.00                                    |               |                                         | 1<br>1    | . 0               | -      | 1 0.00 1 | 0.00 1              | 1     |          | ' 0               | ;               | 1 0.00         | 6.00         |                       |                                               |                 |
| EPTIENSRE              | 27.10                          |               |                |                     | 17.16                                  |                                         | -           |                 | 0.00                                    |               | 1<br>!                                  | 1<br>•    | . v               | 1      | 0.00     | 0.00 1              | į     |          | : 0               | 1               | 0.00           | 0.00         |                       |                                               |                 |
| CTUBBI                 |                                |               |                |                     | 17.05                                  |                                         |             |                 | 0.00                                    |               | 0.00                                    |           |                   | :      | 1 0.00 1 | 9.00                |       |          | ; 0               |                 | 0.00           | 0.00         |                       | 1                                             |                 |
| NOVIENDRE              | 26,30                          |               | 2.04           | 7.83                | 15.53                                  | 0.00                                    | 9.00        | 0.55            | 9.54                                    | : 5.98 ;      | 5.98                                    |           | 15                | 0.43   | 1 5.68 1 | 6.28                |       | 9.00     | 1 15              | 1 0.5           | 54   8.37      | 7.28         | 7.28                  | 9.00                                          | - 1             |
| DIEJEMBRE              | 25.29                          |               | 1.98           | 7.71                | 15.30                                  | 0.00                                    | i 0.00      | 8   0.90        | 13.77                                   | 9-54          | 9.64                                    | 10.00     | 17                | 1 0.55 | 1 8.41 1 | 7.91                | 7.91  | 9.00     | 15                | 0.8             | 31 112.39 I    | 10.78        | 10.79                 | 14.00 4                                       | 18              |
|                        | 1                              |               |                | ľ                   | į                                      | <b>;</b>                                | ł           | ;               | 1                                       | ; ;           | ;                                       | ł         |                   | 1      | ;        | ł                   | 1     |          | į                 | ì               | ; ;            |              | ; ;                   | 1                                             |                 |
| о <b>ли</b> янния:     | 3 6 8 3 3 35 6 8 9 8 9 8 9 8 9 | £ 2 2 8 7 5 1 | u e ± 4.33     | 8861983             | 78.33                                  | *************************************** | = EDM419881 | . F 4 3 5 8 2 3 | 57.08                                   | 78.33<br>x    |                                         | e 0,70    | . 0 3 2 4 0 6 0 0 | 9888#  | 78.33    | essana.a.<br>= 0.70 |       | seseuėn  | # 2 # k 2 ¥ 4 9 6 |                 | 46.18<br>46.18 | 0.60°;       | · 9                   | . N N 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 90113           |
|                        |                                |               |                |                     |                                        |                                         |             |                 | _                                       | 67.08         | • • • •                                 |           |                   |        | 58.93    |                     |       | 1        |                   |                 | 31.74          |              |                       |                                               |                 |

P=PORETENTO DE HORAS-LUZ (VER TABLAS) F=FACTOR DE EVAPOTRANSPIRACION Pub-PRECIPITACION PROBABLE KE-COEFICIENTE DE DESARROLLO DE CADA CULTIVO Ka-CDEFICIENTE GLOBAL DE DESARROLLO J-FACTOR DE CORRECCION PARA EL U.C. U.C.=USD CONSUNTIVG=Kc x f

SUM F J=----xXQ SUM U.C.

> 1.05 FC : 45.95 50.00 54/55

FC 1.09

58.00

1.06

27.61 30.00

n=EFICIENCIA DE RIESO

#### NAZIDNAL 9 E 1. ESIUDIOS

0 M F B W T 1 V 8

BUENAVISTA DE TOMATLAN FATACION BASE: PROVECTO: LA LOMA LONGITUD: MUNICIPIO: SHLOTLAN DE LOS DOCESES LATITUD ESTABBLE 最近的地名美国的现在表现的现在表现的企业,企为"相应的",这种企业的企业的企业的企业的企业的企业的企业的企业的企业的企业,企为"有关",不是一种的现在中国企业的企业的企业的企业,企为"有关",不是一种的现在,但是一种的企业的企业的企业,企为"有关",不是一种的现在,但是一种的企业的企业的企业,但是一种的企业的企业,但是一种的企业的企业,也是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业,但是一种的企业 : CULTIVE: (QUE)(vů: TEMPERATURAL((C + 17.80)) P / F / PRECIPITACION ( LAMINA DE RIEGO EN CMS. LAMINA DE RIEGO EN CMS. 8 E S | Ke | U.S. 10 x U.C.]

cas cas cas cas neta (CALCULADA) PRUTA : cas. | NETA | CALCULADA BRUTA | | cas. | cas. | NETA | CALCULADA BRUTA - 1 (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (8) | (9) | (10) | (12) | (13) | (12) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (13) | (5)x(8) ((10)-(7)) ((18)-(7) | ( (1**2**)/n | t f + {{5}}x⟨9⟩t 1/3/2(4) 9.00 : 0.00 | 0.70 | 10.25 | 7.02 : 9.02 FEBRERO. 25.80 2.01 | 7.28 | 14.65 | 0.00 | 0.00 : 0.00 | 0.00 | 0.00 1 \* MARID 27.30 ) 2.68 1 8.41 1 17.50 1 0.00 1 0.00 ; 1 0.00 1 0.00 1 0.00 1 PARRIL 28.70 2.15 ( 8.51 ) 18.26 ( 0.00 2.22 | 9.11 | 20.18 | 0.00 | 0.00 } 7 0.60 E 0.00 5 \* MAY 0 30.20 % 7.59 0.00 } 0.00 5 3 8 8 1 8 28.90 2.15 | 8.97 | 19.33 | 8.91 | 2.09 : 9.20 : 19.23 : 5.24 : 5.64 1 1 0.00 1 0.00 1 27.50 i \* 30110 5.05 0.00 1 0.00 : 2.08 | 8.92 | 18.52 | 6.74 | " A S 0 5 7 C 27.20 1 2.07 | 3.28 | 17.16 | 6.14 | 0.00 0.00 " SEPTIEMBRE 27.10 1 0.00 | 0.00 | 0.00 27,30 ( 2.08 | 8.19 | 17.05 | 1.75 | 0.00 28 8 7 8 8 **8 8** 2.04 | 7.63 | 15.53 | 9.00 | 9.00 | 0.52 | 2.04 | 7.08 | MOVIEMBRE 26.30 1 0.00 | 0.73 | 11.17 : 9.93 | 1.98 | 7.71 | 15.30 | 0.00 | \* BIGIEMBRE 25.20 1

> 41.64 60.82 41.64

1 1 1 まるものまちが上来れならっ日かままっまれるものでは近日と言葉もなっていっちゃけんりんといれたがないないがあっていたないとなってあっておうからまるとなるととなっていたいかいましょうかいできませんというというできませんがあっている。

PEPORCIENTO DE HORAS-LUZ (VER TABLAS) PARACTUA DE EVAPOTRANSPIRACION Pub-PRECIPITACION PROBABLE-Ko-CDEFICIENTE DE DESARROLLO DE CADA CULTIVO Ko-COEFICIENTE GLOBAL DE DESARROLLO J=FACTOR DE CORRECCION PARA EL D.C. D.C.=USB CONSUNTIVO=Kc x f m=EFICIENCIA DE RIEGO

SUMF J=----xKo SUM U.C.

> FC 1.06

36.54 39.00

#### 3.5.3.2 USO CONSUNTIVO

En un proyecto de riego por desarrollar es básico determinar los requerimientos de riego para los cultivos que se consideran.

El procedimiento usado para conocer el consumo de agua corresponde al criterio de Blaney y Criddle, que mediante fórmulas empíricas permitió estimar el uso consuntivo, utilizando datos meteorológicos y coeficientes de cultivo propuestos por el Departamento de Conservación de Suelos de los Estados Unidos, cuadros 8-10.

## 3.5.3.3 LEY DE DEMANDAS DE RIEGO

En el cuadro 11, con apoyo en el patrón de cultivos propuesto se presenta la distribución de demandas mensual y anual, en Miles y m3/ha, respectivamente.

## 3.5.3.4 GASTO NORMAL DE LA OBRA DE TOMA

La capacidad de una obra de toma y su funcionamiento estará condicionada por una ley de extracciones, de acuerdo con el uso o los usos a que se destine.

El gasto de la obra de toma se calcula con la siguiente fórmula:

#### donde:

Q = Gasto de la obra de toma en m3.

 $1'080,000 = 25 \text{ dias } \times 12 \times 60 \times 60$ 

= 2.44016666667

= 2440.17 Lts/seg.

CUADRO 11

CACCULO DE LA DEMANDA ANUAL
VOLUMEN DE AGUA POR HA.

| CULTING        | LAMINAS DE RIEGO EN CENTIMETROS |    |    |   |   |   |    |    |    |   | volumen total<br>Por ha. De |    |               |
|----------------|---------------------------------|----|----|---|---|---|----|----|----|---|-----------------------------|----|---------------|
| CULTIVO        | E                               | F  | H  | A | H | 1 | 1  | А  | s  | ū | N                           | Ð  | CULTIVO (M3.) |
| SORGO DE SRANO |                                 |    |    |   |   | + | 19 | 18 | 8  |   |                             |    | 4400          |
| MAIZ DE GRANO  |                                 |    |    |   |   |   | 18 | 23 | 18 |   |                             |    | 5900          |
| FRIJOL         |                                 |    |    |   |   |   | 17 | 17 | 8  |   |                             |    | 4200          |
| CHILE          | 18                              | 17 | 17 |   |   |   |    |    |    |   | 15                          | 17 | 8400          |
| JITOMATE       | 23                              | 22 | 22 |   |   |   |    |    |    |   | 15                          | 17 | 9900          |
| CALABACITA     | 17                              |    |    |   |   |   |    |    |    |   | 15                          | 18 | 50 <b>0</b> 0 |
| SANDIA         | 18                              | 15 |    |   |   |   |    |    |    |   | 15                          | 17 | 6500          |

# VOLUMENES DE AGUA EN MILES DE MIS. PARA UNA SUPERFICIE DE 100 HA.

| CULTIVO        | Ε   | F.           | В             | A | Ħ | 1 | ]   | A   | \$  | 0 | N  | Ď           | VOLUMEN TOTAL |
|----------------|-----|--------------|---------------|---|---|---|-----|-----|-----|---|----|-------------|---------------|
| conno or coano |     | <del>-</del> | <del></del> - |   | · |   | 72  | 12  | 32  |   |    | <del></del> | 176           |
| Súrgo de Grano |     |              |               |   |   |   |     |     |     |   |    |             |               |
| MAIZ DE GRAND  |     |              |               |   |   |   | 72  | 92  | 72  |   |    |             | 236           |
| FR1JDL         |     |              |               |   |   |   | 34  | 34  | 16  |   |    |             | ₽4            |
| CHILE          | 36  | 34           | 34            |   |   |   |     |     |     |   | 30 | 34          | 160           |
| JITOMATE       | 46  | 44           | 44            |   |   |   |     |     |     |   | 30 | 34          | 198           |
| ÇALABACITA     | 17  |              |               |   |   |   |     |     |     |   |    | 18          | 35            |
| SANDIA         | 18  | 15           |               |   |   |   |     |     |     |   | 15 | 17          | 65            |
| TOTAL          | 117 | 93           | 78            | 0 | 0 | a | 178 | 198 | 120 | ٥ | 75 | 103         | 96            |

|               |       |       | volumen total | 942000        |                |
|---------------|-------|-------|---------------|---------------|----------------|
| Demanda anual | POR H | ΙΑ. : | · ·           | <del></del> : | 9,620.0 M3/HA. |
|               |       |       | 100           | 100           |                |

# VOLUMENES DE AGUA EN MILES DE NJ. PARA UNA SUPERFICIE DE 1.0 HA.

| Ε | - |  |  |            |  |  | VOLUMEN TOTAL |
|---|---|--|--|------------|--|--|---------------|
|   |   |  |  | 1.78 *1.98 |  |  |               |

(#) VALOR A CONSIDERAR PARA EL CALCULO DEL GASTO NORMAL DE LA OBRA DE TOMA.

# 3.5.4 FUNCIONAMIENTO ANALITICO DE VASO

El proceso básico del funcionamiento de vaso es el siguiente:

Con la diferencia entre el escurrimiento y la demanda se obtiene un cambio parcial en el almacenamiento, el que es modificado por el factor de lluvia menos evaporación obtenido en función del área promedio correspondiente al almacenamiento promedio, y con lo que se obtiene el almacenamiento final.

# 3.5.4.1 CRITERIOS DE DISENO

- 1).— Para un determinado período de estudio de X años el número total de años deficitarios N, no debe exceder del 25% de X y la suma de sus déficits, no será mayor a 5% X.
- 2).- En el caso de un año aislado la deficiencia máxima permisible no deberá sobrepasar el 60%.
- 3).- Si son dos años seguidos, uno de elios no debe ser mayor de 55% y el otro no exceder el 90% acumulado.
- 4).— Si son tres años seguidos la deficiencia máxima anual no debe ser mayor de 50% y la suma de los tres no sobrepasar el 110%.
- 5).— El número máximo de años consecutivos con deficiencias es de tres.
- 6).- La deficiencia media anual permisible del período estudiado no debe exceder del 5%.
- 7).— La deficiencia anual que resulte menor del 1% podrá ser despreciable.
- 8).- El faltante máximo mensual podrá ser hasta del 100%, siempre y cuando se cumplan las restricciones anteriormente señaladas.

#### 3.6 ESTUDIO DE AVENIDAS

Para este estudio se utilizaron distintos métodos de análisis para determinar las avenidas de diseño de la obra de excedencias y definición del bordo libre.

Se emplearon métodos empíricos (Gete, Creager y Lowry), hidrológicos (Hidrograma Unitario Triangular), estadístico-probabilísticos y de transporte de una cuenca aledaña, con objeto de comparar resultados. Los gastos máximos de las avenidas deberan corresponder a los períodos de retorno de 1,000 y 10,000 años.

# 3.6.1 CALCULO DE LA PENDIENTE DEL CAUCE

Para estimar la pendiente promedio del cauce, se utilizaron los criterios de la recta que iguala áreas y la fórmula de Taylor y Schwarz, fig. 4.

a) Recta que iguala áreas

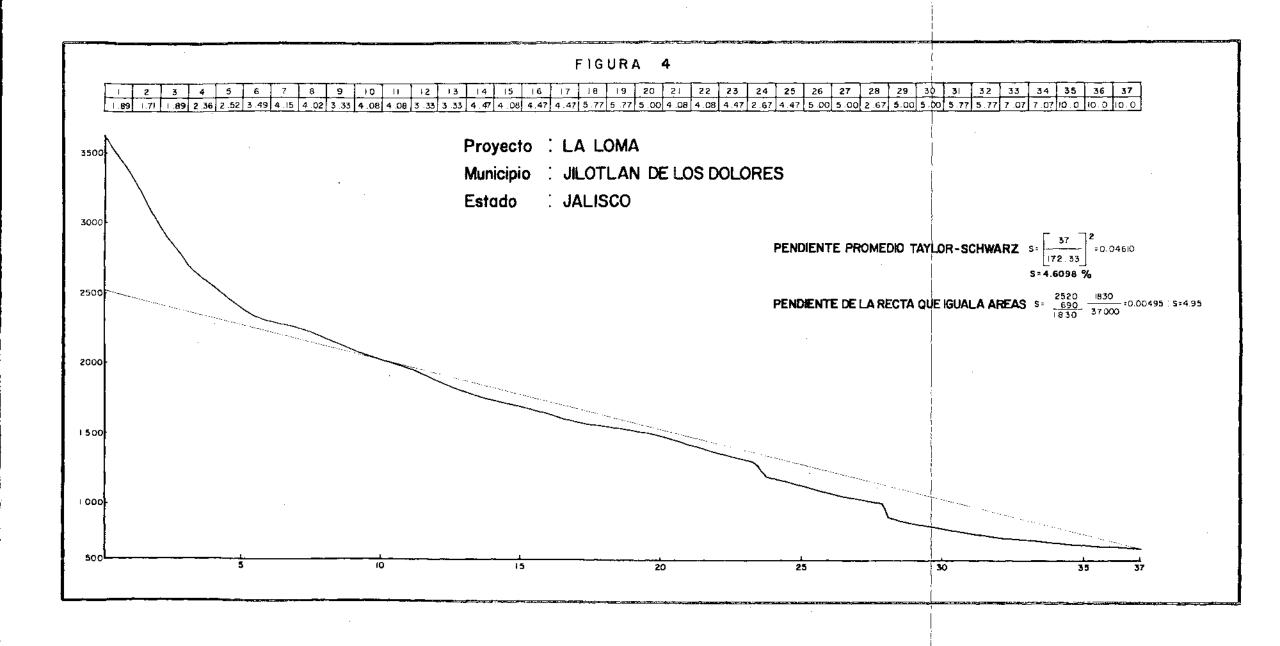
4.95 %

b) Taylor y Schwarz

4.6098 %

La recta que iguala áreas es una manera más real de valuar la pendiente de un cauce, al aceptarla como la pendiente media de una línea recta que, appyandose en el extremo de aguas abajo de la corriente, hace que se tengan áreas iguales entre el perfil del cauce y arriba y abajo de dicha línea.

Otra forma de valuar la pendiente, y que trata de ajustarse a la pendiente real, es usando la ecuación que proponen Taylor y Schwarz, y que se define por la ecuación


en la cual:

S = Pendiente media del colector principal,
adimensional

m = Número de tramos iguales, en los cuales se divide el cauce principal.

Si = Pendiente de cada tramo (i, varía de i a m'), iqual a Hi/L.

Esta ecuación tiende a una mayor aproximación cuanto más grande sea el número de segmentos en los cuales se subdivide el tramo de río por analizar.



## 3.6.2 CALCULO DE LA CURVA "N" DE ESCURRIMIENTO

Para la estimación del número "N" curva de escurrimiento, se aplicó el método del U.S. SOIL CONSERVATION SERVICE, tomando en cuenta las características de suelo y cobertura vegetal.

| Cobertura                                             | Grupa<br>hidralo. | Práctica<br>cultural | Condición<br>hidrológica | CN                   |
|-------------------------------------------------------|-------------------|----------------------|--------------------------|----------------------|
| Bosque<br>Cultivos en H.<br>Cascos de Hac.<br>Caminos | B<br>B<br>C       | Hileras              | Regular<br>Buena         | 60<br>78<br>82<br>87 |
| Pradera Natural                                       | č                 | Surca recto          | Pobre                    | 86                   |
| NII = 76.8<br>NII Adoptado = 7                        | 77                |                      |                          |                      |

# 3.6.3 CALCULO DEL TIEMPO DE CONCENTRACION

Con fórmulas empiricas propuestas por diferentes autores en donde se toman en cuenta las caracteristicas fisiográficas de la cuenca se estimó el tiempo de concentración.

Los métodos utilizados cuadro 12, demuestran que el tiempo de concentración tiene diferentes grados de presición según el método que se aplica.

Se adoptó el criterio de Basso II para el análisis de avenidas:

To Tiempo de concentración, en horas

- L Longitud de cauce, en kms
- H Desnivel, en metros

## SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS DELEGACION ESTATAL DE QUERETARO SUBDELEGACION DE INFRAESTRUCTURA HIDRAULICA RESIDENCIA GENERAL DE ESTUDIOS

## CALCULO DE TIEMPOS DE CONCENTRACION

FECHA : 11-23-1992

HORAS

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO CUADRO NO. 12

CORRIENTE POR APROVECHAR : ARROYO CHICO-CARRIZALILLO

DATOS : (CONSTANCIA DEL CALCULO) COEFICIENTE DE RUGOSIDAD DE MANNING = .04 ADIM = 120.79 KM2 SUPERFICIE TOTAL DE LA CUENCA EN ESTUDIO = 37 KMS LONGITUD DE LA CUENCA COEFICIENTE DE PASSINI .085 ADIM COEFICIENTE DE VENTURA 9.000001E-02 ADIM .0965 ADIM COEFICIENTE DE BELL CDEFICIENTE DE HOYT-LANGBEIN PARA CUENCA GRANDE = 1.365 ADIM COEFICIENTE DE HOYT-LANGBEIN PARA CUENCA CHICA = .805 ADIM LONGITUD TOTAL DEL RIO EN SU CAUCE = 37 KM DESNIVEL TOTAL DEL RIO EN LA CUENCA = 3020 MTS PENDIENTE PROMEDIO TAYOR - SCHWARZ = 4,6098 % PENDIENTE PROMEDIO AREAS SIMILARES = 4.95 % LA CUENCA SE LOCALIZA EN: PIE DE MONTANA TOPOGRAFIA INTERNA DE LA CUENCA MONTAROSA PORCENTAJE DE LA ZONA BOSCOSA EN LA CUENCA 31.63 % PERIMETRO TOTAL DE LA CUENCA 74 KM LDNG. (SUMA) TOTAL DE CORRIENTES EN LA CUENCA = 50 KM VALOR DEL COMPLEJO HIDROLOGICO SUELO-COBERTURA = 77 ADIM

| DENSIDAD DE DRENAJE = .4139416 KM/KM2           |        |         |
|-------------------------------------------------|--------|---------|
| NOMBRE DEL AUTOR                                | TC     | VEL.    |
| DE LA FORMULA                                   | HRS    | M/SEG   |
| TIEMPOS DE CONCENTRAC                           | I O N  |         |
| CARACTERISTICAS FISICAS DE LA CUENÇA            | 3.0677 | 3.3503  |
| KIRPICH (PARA TC < 10 HRS. Y CUENCAS RURALES)   | 2.8024 | 3,6675  |
| KIRPICH (SOLO PARA CUENCAS RURALES)             | 2.8077 | 3,6606  |
| R. R. ROWE                                      | 2.8076 | 3,6607  |
| FOREST RESOURCES DIVISION FAC                   | 2.7857 | 3.6894  |
| E. DASSO #1                                     | 0.5999 | 17.1327 |
| E, BASSO #2                                     | 2.8349 | 3.6254  |
| E. BASSO #3 (PARA CUENCAS < 250 KM2)            | 1.4737 | 6.9739  |
| U.S. SOIL CONSERVATION SERVICE (CUENCAS < 10 KM | 0.3096 | 33,2001 |
| GIANDOTTI                                       | 2.9561 | 3.4768  |
| J.R. TEMEZ (ECUACION ORIGINAL)                  | 8.3151 | 1.2360  |
| TEMEZ (TOMANDO EN CUENTA EL VALOR TL/TC)        | 5.8205 | 1.7658  |
| VELOCIDAD DE ONDA DE AVENIDA #1                 | 2.3109 |         |
| VELOCIDAD DE ONDA DE AVENIDA #2                 | 0.0000 |         |
| PASSINI (PARA CUENCAS > 40 KM2)                 | 6.4040 |         |
| G.A. HATHAWAY                                   | 1.4803 |         |
| VENTURA                                         | 4.5243 | 2.2717  |

TIEMPO DE CONCENTRACION ELEGIDO: TC =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* R E S U L T A D O S \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# 3.6.4 ANALISIS ESTADISTICO DE PRECIPITACIONES MAXIMAS EN 24 HORAS

Para realizar la estimación de las avenidas, es necesario el conocimiento de las precipitaciones en 24 horas de las estaciones que tienen influencia sobre la cuenca.

Para la determinación de la zona de influencia de las estaciones pluviométricas se utilizó el método de los polígonos de Thiessen.

En la determinación de las curvas precipitación-período de retorno, en cada una de las estaciones pluviométricas, se usaron los métodos estadísticos de Gumbel, Nash, Normal, Log-Normal, Pearson III, Log-Pearson III, Gama incompleta. Y elegír la función de distribución que se empleará en la extrapolación de los gastos máximos, en períodos de retorno de 1,000 y 10,000 años, cuadros 13-14.

Las funciones Log-Pearson III y Nash, según ajuste gráfico, fig. 5-6, servirán para la construcción de la gráfica Hp-D-Tr, cuadro 15.

# 3.6.5 METODOS DE ESTIMACION DE AVENIDAS DE DISERO

La metodología a seguir para obtener la avenida de diseño de las estructuras hidraúlicas dependerá de la información disponible en la región, de la cuenca en estudio y de las características de dicha cuenca.

## 3.6.5.1 METODOS EMPIRICOS

A pesar de ser burdos, en algunos casos, sobre todo en problemas de diseño, es necesario utilizarlos debido a que por falta de información no pueden emplearse métodos mas elaborados.

Dentro de los métodos empíricos para la estimación de las avenidas con períodos de retorno de 1,000 y 10,000 años, se utilizaron la fórmula de Gete (que involucra en su fórmula tiempos de retorno) y el método de las Envolventes de Creager y Lowry.

QTr = (4 + 16 Log. Tr) JA

#### Donde :

QTr Gasto asociado a un período de retorno

Tr - Tiempo de retorno

A Area de la cuenca

El pico de la avenida de diseño con el método de las Envolventes de Creager y Lowry se deduce por las fórmulas de estos autores que toman en cuenta el área total de la cuenca en estudio y auxiliar (estación hidrométrica Tejones) que multiplica

# ANALISIS ESTADÍSTICO DE UNA SERIE DE DATOS

FECHA: 11-25-1992

PROYECTO

: LA LOMA

MUNICIPIO

: JILOTLAN DE LOS DOLORES : JALISCO

ESTADO ESTACION

: LOS LIMONES

Area de cuença: 120.79 km2

Año inicial: 1955

Año final: 1981

DATOS (Constancia del cálculo):

Número de datos: 27

## PRECIPITACIONES MAXIMAS ANUALES EN 24 brs (mm):

| AND PREC. 1955 65.30 1956 57.50 1957 49.50 1958 68.50 1959 47.50 1960 64.50 1961 46.00 1962 60.00 1963 39.70 1964 40.00 1965 70.00 1966 29.40 1967 73.50 1969 51.50 | ANG<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1980 | PREC.<br>48.00<br>48.10<br>50.00<br>58.00<br>32.50<br>46.10<br>57.00<br>72.00<br>36.00<br>70.00<br>66.70<br>34.50 | ANG | PREC. | AND | PREC. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|-------|-----|-------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|-------|-----|-------|

 VARIANZA
 52 =
 166.8985

 DESVIACION TIPICA
 S =
 12.9112

 CDEFICIENTE DE SESGO =
 -0.5113

 COEFICIENTE DE VARIACION =
 0.2430

 VALOR DE GAMA =
 16.9404

CORR. INT. FIJO DE OBS. = 1.1300 FACTOR POR A. DE CUENCA = 0.9754

| *===== | = * = :        |        |               |             |           |                |                                        | <del>-</del> |
|--------|----------------|--------|---------------|-------------|-----------|----------------|----------------------------------------|--------------|
| TR     | *              | GUMBEL | NASH          | NORMAL      | LDG       | PEARSON        | LOG PEAR                               | GAMA IN      |
| eណកA   | *              | SIMPLE | MINIMOS2      |             | NORMAL    | III            | SON III                                | COMPLETA     |
| *===== | = <b>*</b> = : |        | ===== RESUL   | TADOS CORRE | EGIDOS en | mm . =====     | ====================================== |              |
| 2      |                | 56.42  | 56.54         | 58.57       | 56.92     | 59.78          | 58.06                                  | 0.00         |
| 5      |                | 71.08  | 70.39         | 70.56       | 69.63     | 70.76          | 70.85                                  | 0.00         |
| 10     |                | 80.78  | 79.56         | 76.82       | 77.37     | 75. <b>8</b> 5 | 77.72                                  | 0.00         |
| 20     |                | 90.09  | <b>88.</b> 36 | 81.78       | B4.40     | 79.16          | 82.52                                  | 0.00         |
| 50     |                | 102.14 | <b>99.7</b> 5 | 87.80       | 93.08     | 83.77          | 89.72                                  | 0.00         |
| 100    |                | 111.17 | 108.28        | 91.70       | 99.40     | 86.28          | 93,90                                  | 0.00         |
| 500    |                | 132.04 | 128.00        | 99.56       | 113.45    | 90.88          | 102.08                                 | 0.00         |
| 1000   |                | 141.01 | 136.48        | 102.69      | 119.58    | 92.49          | 105.10                                 | 0.00         |
| 10000  |                | 170.80 | 164.64        | 114.79      | 146.58    | 96.82          | 113.69                                 | 0.00         |
| ×      | _ =            |        |               |             |           |                |                                        |              |

# ANALISIS ESTADISTICO DE UNA SERIE DE DATOS

FECHA: 11-25-1992

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO ESTACION : PERIBAN

500

1000

10000

192.80

209,62

265.48

Area de cuenca: 120.79 km2 Año inicial: 1969 Año final: 1981

DATOS (Constancia del cálculo): Número de datos: 13

PRECIPITACIONES MAXIMAS ANUALES EN 24 hrs (mm);

FACTOR POR A. DE CUENCA

181.63

197,09

248.44

| AND  | PREC. | AND | PREC. | ANG | PREC. | ANG | PREC. |
|------|-------|-----|-------|-----|-------|-----|-------|
| 1969 | 27.00 |     |       |     |       |     |       |
| 1970 | 43.00 |     |       |     |       |     |       |
| 1971 | 32.00 |     |       |     |       |     |       |
| 1972 | 25.00 |     |       |     |       |     |       |
| 1973 | 38,20 |     |       |     |       |     |       |
| 1974 | 37.50 |     |       |     |       |     |       |
| 1975 | 46,00 |     |       |     |       |     |       |
| 1976 | 83.20 |     |       |     |       |     |       |
| 1977 | 87,00 |     |       |     |       |     |       |
| 1978 | 56.00 |     |       |     |       |     |       |
| 1979 | 34,50 |     |       |     |       |     |       |
| 1980 | 48.00 |     |       |     |       |     |       |
| 1981 | 84.50 |     |       |     |       |     |       |

 VARIANZA
 S2 =
 481.2653

 DESVIACION TIPICA
 S =
 21.9378

 CQEFICIENTE DE SESGO
 =
 0.4247

 COEFICIENTE DE VARIACION =
 0.4443

 VALOR DE GAMA
 =
 5.0660

 CORR. INT. FIJO DE OBS. =
 1.1300

TR GUMBEL NASH NORMAL 1.06 PEARSON LOG PEAR GAMA IN Años SIMPLE MINIMOS2 NORMAL III SON III COMPLETA 49.74 52.73 51.29 54.42 48.58 50.89 2 51.02 5 78.50 76.56 74.78 71.10 74.11 70,42 73.13 10 96.70 93.29 85,42 85.70 86.31 87.04 86.90 114.15 94.20 99.98 95.47 102.05 99.22 20 109.33 136175 118.93 109.40 129.97 50 104,09 109.17 130,10 145.66 151.13 100 153.48 110.72 133.60 118.08 125.75

=

0.9754

136.54

143.93

166.90

208.25

236.78

352.86

145.32

160.23

0.00

168.87

185.40

265.94

124.06

129.38

149.94

PROBABLIDAD OF TO EVERTHERA BULLY

FECHA: 08-24-1992

# \*\*\*\*\* CONSTRUCCION DE GRAFICAS P - D - Tr \*\*\*\*\*

PROYECTO

: LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO

: JALISCO

ESTACION

: LOS LIMONES-PERIBAN UBICADA EN EL ESTADO DE : MICHOACAN

DISTRIBUCION ADOPTADA : LOG-PEARSON - NASH

# \*\*\*\*\*\* RESULTADOS \*\*\*\*\*\*

| TIEMPO * PARA PERIODOS DE RETORNO EN ANOS DE: |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|--|--|--|--|
| EN HRS. * 1000 10000                          |  |  |  |  |  |  |  |  |  |
| PRECIPITACION DURACION EN MM. ===========     |  |  |  |  |  |  |  |  |  |
| 1.00 85.477 101.199                           |  |  |  |  |  |  |  |  |  |
| 2.00 95.684 113.283                           |  |  |  |  |  |  |  |  |  |
| 2.83 101.273 119.900                          |  |  |  |  |  |  |  |  |  |
| 3 00 102,210 121,010                          |  |  |  |  |  |  |  |  |  |
| 4.00 107.109 126.809                          |  |  |  |  |  |  |  |  |  |
| 5.00 111.070 131.499                          |  |  |  |  |  |  |  |  |  |
| 6.00 114.415 135.459                          |  |  |  |  |  |  |  |  |  |
| 12.00 128.077 151.634                         |  |  |  |  |  |  |  |  |  |
| 140 740                                       |  |  |  |  |  |  |  |  |  |
| 24.00 143.370 107.770                         |  |  |  |  |  |  |  |  |  |

a los gastos instantáneos de la estación.

#### 3.6.5.2 METODOS HIDROLOGICOS

Métodos que tienen una mayor aceptación que los empíricos, definen el probable hidrograma de una avenida para un determinado período de retorno específico.

Secuela de cálculo (cuadro 16).

Los principales parámetros que intervienen en el proceso de conversión de lluvia a escurrimiento son los siguientes:

- 1. Se calculan las siguientes características físicas de la cuenca:
  - i.1 Area de la cuenca.
  - 1.2 Altura total de precipitación.
- 1.3 Características generales o promedio de la cuenca (forma, pendiente, vegetación, etc.).
  - 1.4 Distribución de la lluvia en el tiempo.
- 1.5 Distribución en el espacio de la lluvia y de las características de la cuenca.
- 2. A partir de las curvas P-D-Tr construídas para la cuenca de proyecto, se determinan las lluvias de duraciones 1, 2, 3, 4, 5, 6, 12, y 24 horas para los períodos de retorno de 1,000 y 10,000 años (columna 1).
- 3. En seguida se calculan los incrementos de lluvia (columna 2), los cuales se tabulan en la columna 3 según la siguiente secuela para los primeros 6 incrementos: 6, 4, 3, 1, 2, 5. Posteriormente, los incrementos ordenados según la secuencia descrita (columna 3) se acumulan en la columna 4.
- 4. De acuerdo al número N de la curva de escurrimiento, se estima con el criterio del SCS el escurrimiento directo para las cantidades de lluvia de la columna 4.
- 5. En la columna 6 se tabular los incrementos de escurrimiento, los cuales al ser restados a los incrementos de lluvia (columna 3) permiten calcular las pérdidas reales de dichos incrementos de tiempo (columna 8).

El procedimiento del SCS para estimar el escurrimiento directo en los cálculos de avenidas máximas, debe ser corregido debido que tal método reporta valores del incremento de escurrimiento casí iguales a los incrementos de lluvia (columnas 3 y 7), conforme la duración de tormenta aumenta.

Los estudios de campo con infiltrémetros reportan las

| METODO DEL HIDROGRAMA UNITARIO TRIANGULAR (HIDROGRAMA DE ) |                        |                          |                      |               |                |                    |                |              |             |              |          |                                  |                     |
|------------------------------------------------------------|------------------------|--------------------------|----------------------|---------------|----------------|--------------------|----------------|--------------|-------------|--------------|----------|----------------------------------|---------------------|
|                                                            |                        |                          |                      |               |                |                    |                |              |             |              |          |                                  |                     |
| PROYECTO:_                                                 |                        |                          |                      | P:            |                |                    |                | <b>100 —</b> |             |              | 7000     | DE OBRA                          |                     |
| RESION NOROLOGICA No.: PECHA: CALCULO: REVISO:             |                        |                          |                      |               |                |                    |                |              |             |              |          |                                  |                     |
| DATOS:  A                                                  |                        |                          |                      |               |                |                    |                |              |             |              |          |                                  |                     |
| <b>/</b>                                                   | -                      | _KM <sup>®</sup> Tr -    |                      | e             | ies (f         | 244)77             |                |              | ##.         | Reica        | in (#8.  | <del>* ***</del> / * <del></del> | <del></del>         |
| T = brs No+ Sutlestips + Period minimal = mm/bs.           |                        |                          |                      |               |                |                    |                |              |             |              |          |                                  |                     |
| •                                                          | ,                      |                          | 2                    |               | ,              |                    | 4              |              | •           | $\mathbf{L}$ | •        | 7                                |                     |
| TIEMPO                                                     | LEUVIA TO              | TAL IM                   | REMENTO<br>LA LLUVIA | INCRE<br>ORDE | MADO<br>MADO   | ACT.               | UVIA<br>VL ADA |              |             | 1418         | H F O    | MOREMENTO<br>TEORIGA             | DE PERDIDA          |
| Herita                                                     | (m=)                   |                          | (mm)                 | <u> </u>      | =/             | į,                 | -)             |              | <i>m)</i> . |              | n.m/     | (ne i                            | (A#)                |
| ° '                                                        | ļ                      |                          |                      | -             |                |                    |                | <u> </u>     |             | 1            |          |                                  | -                   |
| 1 - 2                                                      | <u> </u>               |                          |                      | -             | _              |                    |                |              |             | -            |          |                                  |                     |
| 4 — 3                                                      | ļ. <u>.         </u>   |                          |                      | <b>}</b> -    | <del></del>    |                    |                | <u> </u>     |             | +            |          |                                  | _                   |
| 2 1                                                        |                        |                          |                      | <del> </del>  |                |                    |                |              |             | <del> </del> |          |                                  |                     |
| 1-1                                                        |                        |                          |                      | 1             |                |                    |                | <u> </u>     |             | ـ            |          | :<br>                            | ļ                   |
| s •                                                        |                        |                          |                      | <del> </del>  |                |                    | <u>.</u>       |              |             | -            |          |                                  | <del> </del>        |
| 4 — 12                                                     | <b> </b>               |                          | · _ <del></del>      | <del> </del>  |                |                    |                | <b></b> _    |             | <del> </del> |          |                                  |                     |
| /2 M                                                       | <u> </u>               |                          | · ·                  | <u> </u>      |                |                    |                | <u> </u>     |             | -            |          |                                  | <u> </u>            |
| GALG                                                       | ULOS:                  |                          |                      | •             |                |                    |                |              |             | •            | -        |                                  | :                   |
| # ) Tiomp                                                  | 0 0 0 Me.              | : 0                      |                      | ) Themps      | 6 a 12         | Ara.: A            | ·              |              | . b.        | a) T/m       | <b>.</b> | 26 hrs. 7 04                     | m                   |
| 79*-                                                       | P +0.0 (               | }·                       | kra                  | T): *         | +0             | ). <b>#</b> (      | )              |              | - 800       | 79.          | -        | +0.8 (                           | ) • <b>bra</b> .    |
|                                                            | £.87 £                 | )                        |                      | 78 · E        |                |                    | ,              |              |             |              | 2.67 (   |                                  |                     |
| <b>"</b> ,≗                                                | <u>200( )10</u>        | ·                        | ***                  | ąp • Œ        | ace (          | <del>-      </del> | ·              | <u>.</u>     | Apg<br>An   | •            | estat.   | <del>-  </del> -                 | <u>p /wg</u><br>##. |
|                                                            |                        | 10                       |                      | 11            | 1.             | 2                  | 1              |              |             | 4            |          | · <u> </u>                       |                     |
| TIEMPO                                                     | OF LLIVES EN<br>EXCERC | MAA I =                  |                      |               | HIDROS<br>HGRA |                    | UNITED A       |              | HORE        |              | 0 8      | 3 E H Y A C                      |                     |
| Hords                                                      | Po(mm.)                | (st <sup>2</sup> /mag/m) | .) (=3               | /20g.)        | NORA           | 10                 | MORA<br>MAXI   | NO           | FIL         | MI           |          |                                  |                     |
| 0 — 1                                                      |                        |                          | 1                    |               |                |                    |                |              | <u> </u>    |              |          |                                  | ·                   |
| · — s                                                      |                        | <br>                     |                      |               | <u> </u>       |                    |                | <u>.</u>     | <u> </u>    |              |          | · .                              |                     |
| 2 — 3                                                      |                        |                          | <u> </u>             |               | <u> </u>       |                    |                |              | <b>_</b>    |              | <u> </u> |                                  |                     |
| 3 — •                                                      |                        |                          | $\perp$              |               |                |                    |                |              |             |              | <u> </u> |                                  | ·                   |
| + — +                                                      |                        | <u> </u>                 | _                    |               |                |                    |                |              | _           |              |          | <u> </u>                         |                     |
| 8 — 8                                                      |                        |                          | $\perp$              |               | <u> </u>       | _                  | _              |              | _           |              | <u> </u> |                                  |                     |
| 6 — 12                                                     |                        |                          | $\bot$               | :             |                |                    |                |              |             |              |          |                                  |                     |
| 12 24                                                      |                        |                          | -                    |               |                | _                  | <u> </u>       |              | l           |              | <u> </u> |                                  | i                   |

siguientes pérdidas mínimas según el tipo de suelo:

Suelos tipo A:

2.5 mm/hr.

Suelos tipo B y C:

1.3 mm/hr.

Suelos tipo D:

0.7 mm/hr.

En base a los valores anteriores se podrán calcular las pérdidads teóricas (columna 7), que serán iguales a los valores de la pérdida límite según el tipo de suelo, por la duración del incremento de lluvias, en horas.

La corrección anteriormente citada consiste en reducir el valor del incremento de escurrimiento calculado cuando la pérdida real es menor que la teórica, tales casos (generalmente en duraciones de 12 y 24 horas) se resta al incremento de lluvia (columna 3) la pérdida teórica y tal resultado será el incremento de escurrimiento corregido (columna 6).

6. De acuerdo al valor calculado para el tiempo de concentración en horas, se selecciona en la tabla siguiente, el tiempo de incremento de la lluvia en exceso D, en horas:

| Valor de<br>to en ho | Valor de "D" en horas |                      |      |  |  |  |  |
|----------------------|-----------------------|----------------------|------|--|--|--|--|
| ras                  | Primeras<br>6 horas   | Terceras<br>12 horas |      |  |  |  |  |
| 3                    | 0.5                   | 3.0                  | 6.0  |  |  |  |  |
| 3 a 10               | 1.0                   | 6.0                  | 12.0 |  |  |  |  |
| 10 a 15              | 2.0                   | 12.0                 | 24.0 |  |  |  |  |
| 15 a 30              | 3,0                   | 18.0                 | 36.0 |  |  |  |  |

En seguida para cada uno de los tres intervalos D seleccionados, se calculan en tiempo de pico tp, el tiempo base del hidrograma to y el gasto máximo qp para un milímetro de escurrimiento, por medio de las ecuaciones:

$$tp = \frac{D}{---} + 0.6 tc$$

- 7. Se calculan los gastos máximos (columna 11) de cada hidrograma triangular por la multiplicación del incremento de escurrimiento (columna 6 igual a columna 9) por el gasto unitario que correspondiente al intervalo de tiempo D (0-6, 6-12, 12-24 horas).
- B. Para cada hidrograma unitario triangular se determinan sus horas de inicio, máximo y final, lo anterior, tomando en cuenta los valores de D, tp y tb.
- 9. Se grafican los hidrogramas unitarios triangulares, a escala, en papel milimétrico y a continuación se suman las ordenadas de todos los hidrogramas que se tengan en cada hora de inicio, máximo y final de cada uno de dichos hidrogramas, de ésta manera se definirá el hidrograma total de la avenida que se estima, cuyo período de retorno corresponde al de la lluvia procesada (paso 2).

3.4.5.3 METODO DE TRANSPORTE DE GASTOS MAXIMOS

Para tal fin se hara uso de la ecuación:

Qmax = Q \* Fta \* Fts \* FtPmax

#### Dande:

Q Gasto aforado en la estación hidrométrica Los Tejones

Fta Factor de transporte magnitud de cuenca

Fts Factor de cauces por pendiente

FtPmax Factor de transporte por precipitación máxima

Pendiente Río Apupataro
Fts = -----Pendiente Río Chico - Carrizalillo

120.79 Fta = ----- = .675181665735 178.90

4.80 Fts = ----- = .910815939279 5.27 51.58 FtPmax = ----- = 1.02138613861 50.50

Qmax = Q \* .62811797595

## 3.7 TRANSITO DE AVENIDAS

# 3.7.1 BORDO LIBRE

Bordo libre, es la distancia vertical entre el máximo embalse y la corona de la presa, que es la parte más elevada de la cortina.

Existen diferentes métodos para calcular el bordo libra de un embalse. Sin embargo todos los métodos consideran como variables determinantes a la longitud efectiva del fetch y la velocidad del viento.

Para determinar el bordo libre a partir del NAME se utilizó el criterio tradicional.

la fórmula para calcular el bordo líbre es:

B.L. = 2,333H

Donde para la determinación de la altura de la pla se aplica la fórmula:

H = (0.005V - 0.06B) JF

- H Altura de las olas sobre la superficie normal del agua tranquila en metros.
- V Velocidad del viento en Km/Hora
- F (Longitud de la mayor distancia en linea recta, sobre la superficie libre del agua a partir de la cortina dado en kilómetros.

# 3.7.2 CURVA DE ELEVACION VS VOLUMEN DE ALMACENAMIENTO

Esta curva se obtiene a partir de los planos topográficos del vaso.

Los datos se dan por parejas de valores, entre las cuales se hacen las interpolaciones para obtener valores intermedios a partir del modelo, cuadro 17.

$$Y = 6.531835 (X)^{\circ} 0.5307735$$

donde:

Y = Volumen almacenado

X = Elevación correspondiente a ese volumen

O bien:

# 3.7.3 REGULARIZACION DE LA AVENIDA DE DISENO

Este proceso es controlado por la equación de continuidad en el vaso, que involucra el volumen de agua que entra en un intervalo de tiempo es igual al volumen de agua que sale en el mismo intervalo más el volumen que queda almacenado en el vaso.

Lo anterior se puede expresar como:

En donde:

- Ii. Ii+1 Es el gasto de entrada al vaso en el instante i,
- Qi, Qi+1 Es el gasto de salida por el vertedor en el instante i, i+1
  - DT Intervalo de tiempo entre los instantes i, i+i
- Vi Volúmen de agua que se almacena en el vaso en el tiempo  $\operatorname{DT}_{\bullet}$

# SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS DELEGACION ESTATAL DE QUERETARO SUBDELEGACION DE INFRAESTRUCTURA HIDRAULICA RESIDENCIA GENERAL DE ESTUDIOS

## CALCULO DE LA REGRESION

FECHA: 11-23-1992

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLDRES

ESTADO : JALISCO

CUADRO NO. 17

## ELEVACION VS CAPACIDAD

# > REGRESION LOGARITMICA < DATOS DE LAS POBLACIONES

|     |      |    | X     |     | · Y             |
|-----|------|----|-------|-----|-----------------|
| === | ==== | == |       | = 3 |                 |
| !   | 1    | ŀ  | 5.00  | ŗ   | 8,100,000.00 !  |
| Ţ   | 2    | 1  | 6,00  | į   | B,700,000.00 }  |
| !   | 3    | 1  | 7.00  | ţ   | 9,500,000.00 !  |
| 1   | 4    | !  | 8.00  | !   | 10,200,000.00 ! |
| !   | 5    | !  | 9.00  | Ė   | 11,000,000.00 ! |
| 1   | 6    | !  | 10,00 | !   | 11,600,000.00 ! |
|     |      |    |       |     |                 |

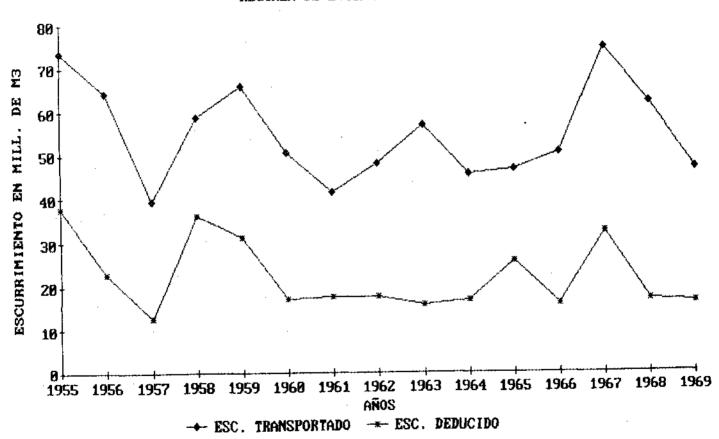
: RESULTADOS DE LA REGRESION :

| ! MEDIA EN 'X'                          | 7.500 !       |
|-----------------------------------------|---------------|
| ! MEDIA EN 'Y'                          | 9850000.000   |
| ! DESVIACION EN 'X'                     | 1.708 !       |
| ! DESVIACION EN 'Y'                     | 1225765.000 ! |
| ! PENDIENTE DE LA RECTA DE LA REGRESION | 0.5307735 !   |
| ! ORDENADA AL ORIGEN                    | 6.5318350 !   |
| ! COEFICIENTE DE CORRELACION            | 0.99792280 }  |
|                                         |               |

# 4. RESULTADOS Y DISCUSION

# 4.1 REBIMEN DE ESCURRIMIENTOS

El régimen que se observa de una corriente es el que suministra la información de mayor confianza en cuanto a las características del flujo en un sitio determinado.


La representación gráfica del régimen de un rio, es a veces sumamente ilustrativo.

En la fig. 7, se observa la magnitud del flujo considerando los métodos del Coeficiente de escurrimiento y el de Transporte de información hidrométrica de una cuenca adyacente.

# 4.1.1 ESCURRIMIENTOS INFERIDOS A PARTIR DE LLUVIAS Y DE LAS CARACTERISTICAS FISIOGRAFICAS DE LA CUENCA

El escurrimiento medio anual, es de 22,175.400 Miles de m3, y un coeficiente de escurrimiento de 17.63274%, cuadros 18-19.

FIGURA 7
REGIMEN DE ESCURRIMIENTO ANUAL



# CALCULO DE COEFICIENTE DE ESCURRIMIENTO ANUAL

FECHA: 11-20-1992

PROYECTO : LA LOMA MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

ESTACION CLIMATOLOGICA BASE: LOS LIMONES UBICADA EN EL ESTADO DE: MICHOACAN

| PERIODO DE EST | ICIA DEL CALCULO):<br>TUDIO CONSIDERADO<br>TAL DE LA CUENCA EN ESTUDIO | 1955 - 1981<br>= 120.79 km2 |
|----------------|------------------------------------------------------------------------|-----------------------------|
| PRECIPITACION  | CENTRO DE GRAVEDAD DE LA CUENCA                                        | = 1040.45 mm.               |
| PRECIPITACION  | PROMEDIO EN LA ESTACION BASE                                           | = 1011.40 mm.               |
| CULTIVO 14,420 | km2 K= 0.27 ** ZONA URBANA                                             | 1.000 km2 K≈ 0.29           |
| PASTIZAL 0.000 | km2 K= 0.00 ** INCULTA Y DESNUDA                                       | 65.290 km2 K= 0.28          |
| BOSQUE 38,200  | km2 K= 0.22 ** CAMINGS Y VEREDAS                                       | 1.880 km2 K= 0.30           |
| PRADERAS 0.000 | km2 K= 0.00                                                            | •                           |

|                   | <><><> R  | E S   | U L     | Т             | A D   | . 0     | S     | <><><>                                     |
|-------------------|-----------|-------|---------|---------------|-------|---------|-------|--------------------------------------------|
|                   |           |       |         | ======        |       | == *==: | ====: |                                            |
|                   | PRECIPITA |       | DE E    |               | CN*A  |         |       | VOL. ESC. ANUAL                            |
| ANO               | CION (mm) | . VAR | ABLE (  | CN)           | (m2   | )       |       | (Miles de mぶ)                              |
|                   |           |       |         | = = = = = = = | ===== | =====   | ====  | = KR = B = = = = = = = = = = = = = = = = = |
| 1955              | 1376.80   |       | .22524  |               | 996,1 |         |       | 37,810.77                                  |
| 1956              | 1035.40   | _     | .17957  |               | 313,2 |         |       | 22,563.57                                  |
| 1957              | 735.70    |       | . 13943 |               |       | 10.00   |       | 12,359.73                                  |
| 1 <i>9</i> 58     | 1341.00   |       | 22045   |               | 392,7 |         |       | 36,029.13                                  |
| 1959              | 1234.50   |       | 20619   |               | 621,4 |         |       | 30,981.06                                  |
| 1960              | 876.10    |       | 15822   |               | 660,4 |         |       | 16,764.26                                  |
| 1961              | 897.30    |       | .16106  |               | 013,0 |         |       | 17,486.31                                  |
| 1962              | 894,10    |       | 16063   |               | 959,0 |         |       | 17,376.37                                  |
| 1963              | 639.60    |       | . 15334 |               |       | B0.00   |       | 15,556.13                                  |
| 1964              | 970.00    |       | 15740   |               | 559,0 |         |       | 16,559.27                                  |
| 1965              | 1111.10   |       | 18968   |               |       | 00.00   |       | 25,603.79                                  |
| 1966              | 849.00    |       | 15459   |               | 209,7 |         |       | 15,863.03                                  |
| 1967              | 1265.70   |       | 21037   |               | 140,3 |         |       | 32,420.85                                  |
| 1968              | 879.50    |       | . 15868 |               | 717,0 |         |       | 14,879.06                                  |
| 196 <del>9</del>  | 863.40    |       | 15652   |               | 449,2 |         |       | 16,338.87                                  |
| 1970              | 1109.00   |       | . 18939 |               | 534,0 |         |       | 25,516.66                                  |
| 1971              | 923.00    |       | 16450   |               |       | 00.00   |       | 18,381.48                                  |
| 1972              | 1099.30   |       | 18810   |               |       | 40.00   |       | 25,114.13                                  |
| 1973              | 1424.10   |       | 23157   |               |       | 40.00   |       | 40,230.10                                  |
| 1974              | 849.00    |       | 15459   |               | 209,7 |         |       | 15,863.03                                  |
| 1975              | 945.20    |       | 16747   |               | 809,7 |         |       | 19,172.80                                  |
| 1976              | 1124.50   |       | 19147   |               | 791,8 |         |       | 26,163.19                                  |
| 1977              | 1017.90   |       | 17720   |               | 018,6 |         |       | 21,878.27                                  |
| 1 <del>9</del> 78 | 975.20    |       | 17149   | 21,           | 308,7 | 00.00   |       | 20,247.91                                  |
| 1979              | 833.10    | _ 0.  | 15247   | 18,           | 945,2 | 70.00   |       | 15,345.63                                  |

# CALCULO DE COEFICIENTE DE ESCURRIMIENTO ANUAL

· FECHA: 11-20-1992

PROYECTO : LA LOMA
MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

ESTACION CLIMATOLOGICA BASE: LOS LIMONES UBICADA EN EL ESTADO DE: MICHOACAN

DATOS (CONSTANCIA DEL CALCULO):

1955 - 1981 PERIODO DE ESTUDIO CONSIDERADO SUPERFICIE TOTAL DE LA CUENCA EN ESTUDIO = 120.79 km2 PRECIPITACION CENTRO DE GRAVEDAD DE LA CUENCA = 1040.45 mm.

PRECIPITACION PROMEDIO EN LA ESTACION BASE

= 1011.40 mm. 1.000 km2 K= 0.29 65.290 km2 K= 0.28 14.420 km2 K= 0.27 \*\* ZONA URBANA CULTIVO 0.000 km2 K= 0.00 \*\* INCULTA Y DESNUDA
38.200 km2 K= 0.22 \*\* CAMINOS Y VEREDAS
0.000 km2 K= 0.00 PASTIZAL 1.880 km2 K= 0.30 BOSQUE

PRADERAS

OOO RESULTADOSOO

| #=======                    |            | ******        |                                         |                      |
|-----------------------------|------------|---------------|-----------------------------------------|----------------------|
|                             | PRECIPITA- | COEF. DE ESC. | CN*A*F .                                | VOL. ESC. ANUAL      |
| AND                         | CION (mm). | VARIABLE (CN) | (m2)                                    | (Miles de m3)        |
|                             | ******     |               | u=++++++++++++                          | ****                 |
| 1980                        | 1036.30    | 0,17966       | 22,324,920.00                           | 22,590.89            |
| 1981                        | 901.10     | 0.16157       | 20,076,260.00                           | 17,617.32            |
| # * * * # # # # # # # # # # | ****       | *******       | #====================================== | <b>######</b>        |
| SUMA =                      | 27,307.10  |               | SUMA =                                  | %59 <b>8</b> ,735.70 |

PROMEDIO CE = 17.63274 %

V.E.M.A. # 22175.4 Miles de m3

# SECRETARIA DE AGRICOLTURA Y EFCURSOS HIDRAGLICOS SDESECRATABLA DE INFRARSTRUCTURA BIDRASSICA DIRECCION GENERAL DE SEGUINIENTO Y COUPROL DE OBRAS HIDRAULICAS COORDINACION REGIONAL CENTRO

RECORREMISATOS MENODALRE EN MILES DE MI

99088 : 11-23-1982

59ADB0 Sc. 19

PROTECTO: LA LOMA MUNICIPIO: JILOTLAN DE LOS DOLORES ESTADO: : JALISCO

PRBIDDO: 1955 - 1981

| ##C    | EHZ            | PRB            | BAR            | 498              | MAT      | JD#                   | 101                       | AG9      | SEP       | OCT      | MOA                | 010            | ASTAL                  |
|--------|----------------|----------------|----------------|------------------|----------|-----------------------|---------------------------|----------|-----------|----------|--------------------|----------------|------------------------|
| 1955   | 0.000          |                |                |                  |          |                       | 10268.340                 |          |           |          | 944,728            | 115.344        | ************           |
| 1956   | 485.871        | 0.0CD          | 0.000<br>0.000 | 0, 800<br>0, 800 |          |                       |                           |          |           |          |                    |                | 37810.770              |
| 1957   | 0.000          | 9.900<br>9.900 | 63.065         | 0.000            |          |                       | 4002.441<br>1579.896      |          |           |          | 141.821<br>545.428 | 0.000<br>0.000 | 22563.578<br>12539.738 |
| 1958   | 2122.522       | 112.843        | D. 000         |                  |          |                       | 6205.361                  |          |           |          |                    | 1375.609       | 38029, 130             |
| 1959   | 163.124        | 0.000          | 0.000          |                  |          |                       | 4544, 893                 |          |           |          | 75, 288            | 0.010          | 30981,060              |
| 1966   | 105.213        | 0.000<br>0.000 | 0.000          | 0.000            | 37.405   |                       | 1601.991                  |          |           |          |                    | 168.389        | 16764.269              |
| 1961   | 473.551        | 9. 100         | 29.232         | 0.000            |          |                       | 4129.443                  |          |           |          | 19.488             | 0 808          | 17486.319              |
| 1982   | 0.000          | 0.000          | 0.000          | 245.818          |          |                       | 2962.699                  |          |           |          | 33.039             | 150.476        | 17376.310              |
| 19E3   | 0.000          | 3.000          | 103.757        | 24.086           |          |                       | 3425.832                  |          |           |          | 446.525            | 15 . 257       | 15, 59, 198            |
| 1964   | 433.967        | 13.038         | 91.845         | 0.000            |          |                       | 4100.578                  |          |           | 312.152  |                    | 440.367        | 18559 1.0              |
| 1955   | 230.436        | 442.438        | 0.000          | 241.95B          |          |                       | 3401.241                  |          |           |          |                    | 115 218        | 25883.79%              |
| 1966   | 201.791        | 256.371        | 16. 316        | 33, 422          |          |                       | 3890.086                  |          |           |          |                    | 9.345          | 15853 £3.              |
| 1967   | 2392.437       | 0.000          | 0.000          |                  |          |                       | 2758.731                  |          |           |          |                    | 125 267        | 32428,850              |
| 1958   | 5, 757         |                | 1143.823       |                  |          |                       | 3558.133                  |          |           |          |                    |                | 16879.960              |
| 1959   | 52, 987        | 151.391        | 193,923        |                  |          |                       | 3391.158                  |          |           |          | 0.460              |                | 16338.375              |
| 1970   | 118.759        | 345.131        | 0.000          | 0.000            |          |                       | 6097,309                  |          |           | 1196.453 |                    | 0.009          | 25516.860              |
| 1371   | 0.000          | 0.000          | 25,890         | 0.000            | 137, 415 | 3192.338              | 2612.867                  | 3526.973 | 6000.433  | 2596.935 | 209.109            | 19.661         | 18331,680              |
| 1372   | 100.529        | 0.000          | 127.945        | 0.000            | 1740,971 | 6518,360              | 3417, 118                 | 5142.948 | 3870.347  | 932, 173 | 1265.745           | 0.000          | 25116, 148             |
| 1973   | 248.598        | 3059.945       | 0.000          | 1460, 499        | 2115.887 | 3152,643              | 9124.586                  | 5330.679 | 5836.377  | 8463.548 | 0.006              | 445.342        | 40230.110              |
| 1974   | 0.000          | 0.000          | 74,737         | 0.000            | 569.873  | 3165, 133             | 4338.511                  | 2742,865 | 3351.978  | 599.768  | £91.322            | 325.545        | 15863.030              |
| 1975   | 557.B21        | 9.000          | 9,000          | 0.000            | 492.911  | 2955, 435             | 4572, 101                 | 5442,250 | 5559.950  | .539.585 | 36.512             | 16.228         | 19172.800              |
| 1975   | 6. 00 <b>0</b> | 11,633         | 0.000          | 180, D46         |          |                       | 7515.083                  |          |           | 3524.876 |                    | 93.066         | 26153.190              |
| 1977   | 133, 260       | 75.227         | 9,000          | 124,653          |          | 6540,483              | 3778.584                  | 2781,264 | 4895,483  | 1184.294 | 1831.249           | 167.850        | 21878, 270             |
| 1978   | 120.543        | 368.345        | 76.898         | 0.000            |          | 3256,749              | 1332.397                  | 2388.005 | 5033,724  | 3998.714 | 145, 483           | 41.557         | 00267.910              |
| 1979   | 0,000          | 367,089        | 0.000          | 0.000            |          |                       | 3621,355                  |          |           |          | 0.500              | 348, 156       | 15345, 630             |
| 1980   | 3795,305       | 61,039         | 0.000          | [3.080           |          |                       | <b>4255</b> , 276         |          |           |          |                    | 106.998        | 22599,890              |
| 1981   | 1561, 982      | 54.518         | 9, 775         | 218.970          |          |                       | 4852.534                  |          |           |          |                    | 160.317        | 17817.320              |
| ====== | *:5::::::::    | 353545444      |                | **********       |          | *::::: <b>:::</b> ::: | := <b>:</b> =:== <b>:</b> | *        | ********* | *        | *********          |                |                        |
| EDIOS  | 534,092        | 202.812        | 72, 104        | 227.952          | 660,977  | 3895.760              | 1599,945                  | 4220,808 | 4828.645  | 2256.942 | 554.912            | 214,322        | 22182.070              |
| . STD. | 911.561        | 584.604        | 219.828        | 733.127          | 750.669  | 1965, 714             | 190D.782                  | 1680.681 | 2054, 135 | 1915.905 | 673.374            | 302.851        |                        |
| Yoŝ    | 3795.305       | 3059.945       | 1143.823       | 3611.320         | 3006,733 | 9249.559              | 10268,340                 | 8227.852 | 11597.548 | 8463.548 | 2350.894           | 1375.639       |                        |
| B05    | 9,096          | 0.000          | 5,000          | 0.000            | 0.000    | 750.0 <del>9</del> 6  | 1678. 896                 | 2189.123 | 1175.919  | 121, 571 | 0.000              | 0.000          |                        |

# 4.1.2 ESCURRIMIENTOS TRANSPORTADOS

# CUADRO 20

| ANO  | ESTACION TEJONES VOL. ESC. ANUAL MILES DE MJ. | PROYECTO LA LOMA<br>ESC. TRANSPORTADO<br>MILES DE M3. |
|------|-----------------------------------------------|-------------------------------------------------------|
| 1955 | 117,624.00                                    | 73,402.85                                             |
| 1956 | 102,736.50                                    | 64,111.69                                             |
| 1957 | 62,939.89                                     | 39,276.83                                             |
| 1958 | 94,300.15                                     | 58,847.36                                             |
| 1757 | 105,315.50                                    | 65,721.55                                             |
| 1960 | 80,853.12                                     | 50,455.10                                             |
| 1961 | 66,725.85                                     | 41,639.64                                             |
| 1962 | 76,959.93                                     | 48,026.33                                             |
| 1963 | 90,799.48                                     | 56,662.88                                             |
| 1964 | 72,949.24                                     | 45,522.85                                             |
| 1965 | 74,794.75                                     | 46,675.03                                             |
| 1966 | 81,127.87                                     | 50,627.44                                             |
| 1967 | 119,411.70                                    | 74,517.96                                             |
| 1968 | 99,596.73                                     | 62,152.66                                             |
| 1969 | 75,197.37                                     | 46,926.10                                             |

## 4.2 FUNCIONAMIENTO DE VASO

# 4.2.1 CAPACIDAD DE AZOLVES

El aporte de material de arrastre que se acumulará en la obra durante su vida útil por el método empírico es de 1,108.77 Miles de m3.

## 4.2.2 FUNCIONAMIENTO ANALITICO DE VASO

Con el objeto de determinar la capacidad útil óptima de la presa, se realizaron diversas simulaciones de capacidad-superficie con una extracción de 9,620 m3/ha.

La capacidad elegida desde el punto de vista hidrológico de  $8.3\,$  Mill. de  $m3.\,$  con deficiencias de  $0\,$  al  $5\%,\,$  se considera aceptable, quadros  $21-22.\,$ 

El resumen de las simulaciones se presenta en el cuadro siguiente:

| CAPACIDAD TOTAL  | Mm3 | 8.3      | 8,3   | 8.3   | 8.3   |
|------------------|-----|----------|-------|-------|-------|
| APROVECHAMIENTO  | Mm3 | 12.80    | 14.34 | 14.75 | 15.13 |
|                  | %   | 56.93    | 63.70 | 65.49 | 67.12 |
| DERRAMES         | %   | 41.59    | 34.99 | 33.25 | 31.66 |
| EVAPORACION      | %   | 1.48     | 1.31  | 1.26  | 1.22  |
| ANOS CON DEFICIT |     | <u> </u> | 5     | 7     | 12    |
| DEF. MAXIMA ANUA | %   |          | 5,50  | 7.20  | 8.70  |
| DOS ANOS (MAYOR) | *   |          | 5.50  | 7.20  | 8.70  |
| DOS ANOS (SUMA)  | %   |          | 9.20  | 12.70 | 15.90 |
| TRES ANOS (SUMA) | *   |          |       |       | 7.20  |
| ANOS CON DEFICIE | Ν°  |          | 2     | 2     | 3     |
| DEF. MEDIA ANUAL | %   | 1        | 0.59  | 1.05  | 1.71  |
| SUP. BENEFICIADA | HAS | 1331     | 1500  | 1550  | 1600  |

COMISION NACIONAL DEL AGUA. BERENCIA ESTATAL EN JAL. RES. GRAL, EST.

## RESIMEN ANUAL DE LA SINULACION

PROYECTO : LA LOMA MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO FECHA : 11-25-1992

CAP. TOTAL # 8.30 HM3 SUP. BENEF. 1,550.00 HA. DEM. ANUAL/HA. # 9,620.00 M3

| =t=== | **** | ###################################### |          |            |           | +========== | ******** | ##### <b>##</b> |
|-------|------|----------------------------------------|----------|------------|-----------|-------------|----------|-----------------|
|       |      | VOLUMEN                                | VOLUMEN  | VOLUMEN    | VOLUMEN   | VOLUMEN     | DEFICIT  | X DEFIC         |
| NG.   | ARO  | INICIAL                                | AZOLVES  | DERRAMADO  | evaporado | FINAL       | DEL IUI  | A DEFIL         |
|       |      | <del></del>                            |          |            |           |             |          |                 |
| 1     | 1955 | 8,300,00                               | 1,108.77 | 25,540.85  | +427,74   | 5,587.84    | 0.00     | 0.0 %           |
| 2     | 1956 | 5,587.84                               | 1,108.77 | 0,463.25   | +294,83   | 4,668.31    | 0.00     | 0.0 %           |
| 3     | 1957 | 4,668.31                               | 1,108.77 | 0.00       | +257.71   | 3,064.18    | 953.27   | 6.4 %           |
| 4     | 1958 | 3,064.18                               | 1,108.77 | 17,953,98  | +154.14   | 6,691.32    | 345.97   | 2.3 %           |
| 5     | 1959 | 6,691.32                               | 1,108.77 | 17,255.92  | +304.26   | 5,455.51    | 0.00     | 0.0 %           |
| 6     | 1960 | 5,455,51                               | 1,108.77 | 1,706.63   | +272.35   | 5,457.37    | 142.72   | 1.0 X           |
| 7     | 1961 | 5,657.37                               | 1,108.77 | 3,504.03   | +305.25   | 4,603.70    | 0.00     | 0.0 %           |
| 8     | 1962 | 4,603.70                               | 1,108.77 | 3,281.72   | +259.63   | 4,754.60    | 1,074,39 | 7.2 %           |
| 9     | 1963 | 4,754.60                               | 1,108.77 | 150.78     | +232.85   | 5,977.01    | 821.74   | 5.5 %           |
| 10    | 1964 | 5,977.01                               | 1,108.77 | 2,395.79   | +291.41   | 5,111,45    | 0.00     | 0.0 %           |
| 11    | 1965 | 5,111.45                               | 1,109.77 | 10,257,74  | +236.86   | 5,576.64    | 0.00     | 0.0 K           |
| 12    | 1966 | 5,576.64                               | 1,108.77 | 2,158,77   | +270.71   | 4,213.47    | 0.00     | 0.0 X           |
| 13    | 1967 | 4,213.47                               | 1,108.77 | 16, 162.88 | +255,17   | 5,582.60    | 0.00     | 0.0 X           |
| 14    | 1968 | 5,582.60                               | 1,108.77 | 1,170.30   | +246.69   | 6,254.72    | . 0.00   | 0.0 X           |
| 15    | 1969 | 6,254.72                               | 1,109.77 | 1,847,27   | +341.20   | 5,660.90    | 0.00     | Q.0 %           |
| 16    | 1970 | 5,660.90                               | 1,108.77 | 10,870.56  | +315.16   | 5,321.15    | 0.00     | 0.0 X           |
| 17    | 1971 | 5,321.15                               | 1,108.77 | 3,481.04   | +270.07   | 5,542.71    | 350.49   | 2.4 %           |
| 18    | 1972 | 5,542.71                               | 1,108.77 | 10,172.25  | +286.76   | 5,485.04    | 0.00     | 0.0 X           |
| 19    | 1973 | 5,485.04                               | 1,109.77 | 24,781.62  | +387.88   | 5,912.72    | 0.00     | 0.0 %           |
| 20    | 1974 | 5,912.72                               | 1,108.77 | 1,508.86   | +288.04   | 5,206.32    | 0.00     | 0.0 X           |
| 21    | 1975 | 5,204.32                               | 1,108.77 | 4,226.B3   | +278.32   | 5,157.78    | 0.00     | 0.0 %           |
| 22    | 1976 | 5,157.78                               | 1,108.77 | 11,337.54  | +193.32   | 5,634.16    | 531.16   | 3.6 %           |
| 23    | 1977 | 5,634.16                               | 1,108.77 | 6,867.55   | +225.08   | 5,686.37    | 0.00     | 0.0 %           |
| 24    | 1978 | 5,686.37                               | 1,108.77 | 5,456.33   | +281.10   | 5,495.24    | 0.00     | 0.0 X           |
| 25    | 1979 | 5,495.24                               | 1,108.77 | 1,719.79   | +328.23   | 4,018.47    | 0.00     | 0.0 %           |
| 26    | 1990 | 4,018.47                               | 1,108.77 | 5,922.77   | +350.79   | 5,579.15    | 0.00     | 0.0 %           |
| 27    | 1991 | 5,578.15                               | 1,108.77 | 3,995.49   | +324.68   | 4,073.28    | 0.00     | 0.0 %           |

PORCIENTO DE DEFICIENCIAS EN EL PERIODO 1955 - 1981 : 1.05 %

NOTA: CANTIDADES EN MILES DE METROS CUBICOS

# COMISION NACIONAL DEL AGUA. GERENCIA ESTATAL EN JAL. RESID. GRAL. DE ESTUDIOS.

ESTADO : JALISCO

# FUNCIONAMIENTO ANALITICO DEL VASO

PROYECTO : LA LOMA

| MUNICIPIO: JILOTLAN DE LOS DOLORES         | FECHA    | : 11-2         | 5-1992 |
|--------------------------------------------|----------|----------------|--------|
|                                            | =======  | ± <b>55</b> 5= | =====  |
| CAPACIDAD TOTAL                            | 8,300,   | 000.0          | мз     |
| CAPACIDAD UTIL                             | 7,191,   | 230.0          | ъм     |
| CAPACIDAD DE AZOLVES                       | 1,108,   | 770.0          | M3     |
| VOLUMEN ESCURRIDO MEDIO ANUAL              | 22,529,  | 200.0          | MZ     |
| VOLUMEN APROVECHADO MEDIO ANUAL            | 14,754,  | 710.0          | ΣМ     |
| PORCIENTO DE APROVECHAMIENTO               |          | 65.49          | %      |
| VOLUMEN EVAPORADO MEDIO ANUAL              | 284,4    | 460.7 !        | ΣM     |
| PORCIENTO DE EVAPORACION                   |          | 1.26           | %      |
| VOLUMEN DERRAMADO MEDIO ANUAL              | 7,490,0  | 027.0          | MŠ     |
| PORCIENTO DE DERRAMES                      |          | 33.25          | %      |
| DEMANDA ANUAL POR HECTAREA                 | 9,       | 520.0 I        | M3     |
| SUPERFICIE BENEFICIADA                     | 1,       | 550.0          | HA.    |
| PORCIENTO DE DEFICIENCIAS                  |          | 1.05           | %      |
| EFICIENCIA DEL VASD                        |          | 2.05           | 2      |
| PERIODO DE ESTUDIO : 1955 - 1981           | :        | 27 ANOS        | 5      |
| VOL. ESC. MEDIO POR ENTRADAS SUPERFICIALES | 22,182,0 | 070.0 1        | MS     |
| VOL. DE APORTACIONES POR LLUVIA            | 5,145,   | 361.0          | MZ     |
| VOLUMEN DEL EMBALSE APROVECHADO            | 4,226,   | 719.0          | M3     |
| VOLUMEN ESCURRIDO MEDIO ANUAL              | 22,529,  | 200.03         | EM     |
| NOTAS :                                    |          |                |        |

# 4.3 AVENIDAS DE DISEÑO

Para fijar la avenida de diseño se recomienda, aplicar por lo menos dos procedimientos a fin de comparar los resultados y además juzgar otros factores con los cuales se pueda normar el criterio para adoptar en definitiva la avenida de proyecto.

## 4.3.1 METODOS EMPIRICOS

| Método  | Tr (a   | r (años) |  |  |
|---------|---------|----------|--|--|
|         | 1000    | 10000    |  |  |
| Sete    | 571.503 | 747.351  |  |  |
| Creager | 533.221 | 684.954  |  |  |
| Lowry   | 514.455 | 660.850  |  |  |

| 4.3.2 METODOS HIDROLOGICOS               |           |         |  |  |  |  |  |  |
|------------------------------------------|-----------|---------|--|--|--|--|--|--|
| Método                                   | Tr (años) |         |  |  |  |  |  |  |
|                                          | 1000      | 10000   |  |  |  |  |  |  |
| 2. Hidrograma U.<br>Triangular (U.S.B.R) | 665,314   | 879.968 |  |  |  |  |  |  |

## SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS. D.G.S.C.O.H. COORDINACION REGIONAL CENTRO DIRECCION DE INGENIERIA BASICA

#### CALCULO DE GASTOS MAXIMOS INSTANTANEOS

FECHA: 08-24-1992

PROYECTO: LA LOMA

MUNICIPIO: JILOTLAN DE LOS DOLORES

ESTADO: JALISCO

AFLUENTE: CHICO - CARRIZALILLO

ESTACION: LOS TEJONES

DATOS (CONSTANCIA DEL CALCULO):
SUPERFICIE TOTAL DE LA CUENCA BASE \_ = 178.9 Km2
SUPERFICIE PARCIAL DE LA CUENCA EN ESTUDIO = 120.79 Km2
NUMERO DE DATOS INGRESADOS PARA EL ESTUDIO = 15 DATOS

| ============                | *****                                   | ***** R E S U L | TADOS ****                     | ****           |
|-----------------------------|-----------------------------------------|-----------------|--------------------------------|----------------|
| * GASTOS *                  | CRE                                     | AGER            | * L 0                          | W R Y *        |
| * DE LA *=                  | ======================================= |                 |                                | **********     |
| *CUENCA BASE *              | GASTO UNIT.                             | GASTO MAXIMO    | * GASTO UNIT.                  | GASTO MAXIMO * |
| * EN M3/Seg *               | M3/Seg/Km2                              | M3/5@g          | <ul><li># M3/Seg/Km2</li></ul> | M3/Seg *       |
| ##=======# <b>*</b>         | *****                                   | ******          | ******                         | *****          |
| 38.70                       | 0.25                                    | 30.65           | 0.24                           | 29.57          |
| 71.70                       | 0.47                                    | 56.79           | 0.45                           | 54.79          |
| 36.40                       | 0.24                                    | 28.83           | 0.23                           | 27 <b>.01</b>  |
| 86.10                       | 0.56                                    | <b>68.19</b>    | 0.54                           | 65.79          |
| 72.20                       | 0.47                                    | 57.18           | 0.46                           | 55.17          |
| <b>117.5</b> 0              | 0.77                                    | 93,06           | 0.74                           | 99.78          |
| 155.80                      | 1.02                                    | 123.39          | 0 <b>.99</b>                   | 119.05         |
| <b>285.</b> 20              | 1.87                                    | 225.68          | 1.80                           | 217.93         |
| 309.00                      | 2.03                                    | 244.73          | 1.95                           | 236.11         |
| 165.20                      | 1,08                                    | 130.84          | 1.05                           | 126.23         |
| 248.70                      | 1.63                                    | 196.97          | 1.57                           | 190.04         |
| 76,60                       | 0.50                                    | 60.67           | 0.48                           | 58.53          |
| 142.60                      | 0.93                                    | 112.94          | Ÿ <b>.9</b> 0                  | 108.96         |
| 144.50                      | 0.95                                    | 114.44          | 0.91                           | 110.42         |
| 169.60                      | 1.11                                    | 134.32          | 1.07                           | 129.60         |
| >4========== <del>4</del> 4 | . * * * * * * * * * * * * * * *         | *******         | ******                         | *********      |

# SECRETARIA DE AGRICULTURA Y RECURSOS HICPALLÍCOS SUBSECRETARIA DE INFRAESTRUJTURA HIDRAULICA D.B.S.C.O.H. COURDINACION REGIONAL CENTRO

METODO DEL HIDROGRAMA UNITARIO TRIANGULAR DEL U.S.B.R.

FECHA: 11-24-1992

PROVECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

DATOS DEL PROYECTO :

AREA ≈ 120.790 Km2 P24H = 143.370 mm N = 77.00 Adim.

| 0            | 1       | 2               | -3       | 4       | 5      | 6         | 7                            | ₽       |
|--------------|---------|-----------------|----------|---------|--------|-----------|------------------------------|---------|
| TIEMPO       | LLUVIA  | INCREM.         | INCREM.  | LLUVIA  | ESCURR | IMIENTO - | INUR. DE                     | ⇔ERDIDA |
| Horas        | TOTAL   | LLUVIA          | ORDENADO | ACUMBL. | ACUM.  | INCREM.   | TECRICA                      | REAL    |
|              | mm      | mm              | mm .     | mm      | un un  | TP ffr    | מגוד                         | ເລເກ    |
| 0 - 1        | 95.477  | 85 <b>.4</b> 77 | 3.345    | J.345   | 0.000  | 0.000     | 2.)                          | 3.56    |
| 1 - 2        | 95,684  | 10.207          | 4.899    | 8.244   | 0.000  | 0.000     | 22.0                         | 4.50    |
| 2 - 3        | 102,210 | 6.527           | 6.527    | 14.770  | 0.000  | 0.000     | $\mathbb{R} \cup \mathbb{R}$ | 4.50    |
| 3 - 4        | 107.109 | 4.899           | 85,477   | 100.247 | 44.969 | 44.964    | 2.9                          | 46.51   |
| 4 - 5        | 111.070 | 3.961           | 10.207   | 110.454 | 53.043 | 8.074     | 2.0                          | 2.15    |
| 5 <b>~ 6</b> | 114.415 | 3.345           | 3.961    | 114.415 | 56.243 | 7.200     | 2.0                          | 0.75    |
| 6 - 12       | 128.077 | 13.652          | 13.662   | 128.077 | 67.526 | 11.283    | 12.0                         | 2.38    |
| 12 - 24      | 143.370 | 15.2 <b>9</b> 3 | 15.293   | 143.370 | 80,534 | 13.008    | 24.0                         | 2.29    |

| CALCULOS :            |                        |                           |
|-----------------------|------------------------|---------------------------|
| A)                    | B)                     | C)                        |
| TIEMPO DE O A 6 Horas | TIEMPO DE 6 A 12 Horas | TIEMPO DE 12 A 24 Horas   |
| D = 0.50  Horas       | D = 3.00 Horas         | D = <b>6.00</b> Moras     |
| TP = 1.951 Horas      | TP = 3.201  Horas      | 1P = 4.701 Horas          |
| TB ≈ 5.209 Horas      | TB = 8.547 Horas       | TB = <b>12.55</b> 2 Horas |
| qp = 12.878 m3/s/mm   | gp = 7.849 m3/s/mm     | QP = 5.345  m3/s/mm       |

| O<br>TIEMPO<br>Hrs                                                      | 9<br>INCREMEN.<br>LLUVIA<br>Pe                                        | 10<br>GP<br>Para 1 mm<br>m3/seg/mm                                                   | 11<br>Di<br>Ol≈qp*Pe<br>m3/seg                                             | 12<br>HIDROG.<br>Hbra<br>Inicio                              | 13<br>UNIT. DEL<br>Hora<br>Maximo                    | 14<br>INCR.<br>Hora<br>Final                          |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| 0 = 1<br>1 + 2<br>2 + 3<br>5 = 4<br>4 + 5<br>5 + 6<br>6 = 10<br>12 + 24 | 0.000<br>0.000<br>0.000<br>44.925<br>8.074<br>1.961<br>1.662<br>0.000 | 12.878<br>12.878<br>12.878<br>12.878<br>12.878<br>12.878<br>12.878<br>7.849<br>5.345 | 0.000<br>0.000<br>0.000<br>579.112<br>107.973<br>25.253<br>13.045<br>0.000 | 0.00<br>0.50<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00<br>6.00 | 1.95<br>2.45<br>3.45<br>5.45<br>0.95<br>4.45<br>6.20 | 5.21<br>5.71<br>6.23<br>5.71<br>7.21<br>7.71<br>11.55 |

# SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS -SUBSECRETARIA DE INFRAESTRUCTURA HIDRAULICA D.G.S.C.O.H. COORDINACION REGIONAL CENTRO

# METODO DEL HIDROGRAMA UNITARIO TRIANGULAR DEL U.S.B.R.

FECHA: 11-24-1992

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

DATOS DEL PROYECTO :

| O<br>TIEMPO | 1<br>LLUVIA | 2<br>INCREM. | 3<br>INCREM. | 4<br>LLUVIA | 5<br>ESCURE | 6<br>RIMIENTO | 7<br>INCR. DE | e<br>PERDIDA |
|-------------|-------------|--------------|--------------|-------------|-------------|---------------|---------------|--------------|
| Horas       | TOTAL       | LLUVIA       | DRDENADO     | ACUMUL.     | ACUM.       | INCREM.       | TEDRICA       | REAL         |
|             | mm          | mm:          | mm           | min         | ጣጡ          |               | mm            | mm           |
| 0 - 1       | 101.199     | 101.199      | 3.960        | 3.960       | 0.000       | 0.000         | 2.0           | 3.95         |
| 1 - 2       | 113.283     | 12.084       | 5.800        | 9,760       | 0.000       | 0.000         | 2.0           | 5.30         |
| 2 - 3       | 121.010     | 7.727        | 7.727        | 17.487      | 0.068       | 0.068         | 2.0           | 7.66         |
| 3 - 4       | 126.810     | 5.800        | 101.199      | 118.686     | 59.731      | 59.663        | 2.0           | 41.54        |
| 4 ~ 5       | 131.499     | 4.689        | 12.084       | 130.770     | 69.790      | 10,059        | 2.0           | 2.03         |
| 5 - 6       | 135.459     | 3.960        | 4.689        | 135.459     | 73.760      | 3.971         | 2.0           | 0.72         |
| 6 - 12      | 151.634     | 16.175       | 16.175       | 151.634     | 87.700      | 13.939        | 12.0          | 2.24         |
| 12 - 24     | 169.740     | 18-106       | 18.106       | 169.740     | 103.676     | 15.976        | 24.0          | 2.13         |

| CALCULOS:             |                        |                         |
|-----------------------|------------------------|-------------------------|
| A)                    | B)                     | (C)                     |
| TIEMPO DE O A 6 Horas | TIEMPO DE 6 A 12 Horas | Tiempo de 12 A 24 Horas |
| D = 0.50  Horas       | D = 3.00  Horas        | D = 6.00  Horas         |
| TP = 1.951 Horas      | TP = 3.201 Horas       | TP = 4.701 Horas        |
| TB = 5.209 Horas      | TB = 8.547 Horas       | TB = 12.552  Horas      |
| pp = 12.878 m3/s/mm   | ap # 7.949 m3/s/mm     | QP = 5.345 m3/s/mm      |

| O<br>TIEMP<br>Hrs | D  | 9<br>INCREMEN.<br>LLUVIA<br>Pe | 10<br>QP<br>Para 1 mm<br>m3/seg/mm | 11<br>OI<br>QI=qp*Pe<br>m3/seg | 12<br>HIDROG.<br>Hora<br>Inicio | 13<br>UNIT. DEL<br>Hora<br>Maximo | 14<br>INCR.<br>Hora<br>Final |
|-------------------|----|--------------------------------|------------------------------------|--------------------------------|---------------------------------|-----------------------------------|------------------------------|
| 0 -               | 1  | 0.000                          | 12.878                             | 0.000                          | 0.00                            | 1.95                              | 5.21                         |
| 1 -               | 2  | 0.000                          | 12.878                             | 0.000                          | 0.50                            | 2.45                              | 5.71                         |
| 2 -               | 3  | 0.068                          | 12.878                             | 0.881                          | 1.00                            | 2.95                              | 6.21                         |
| 3                 | 4  | 59.663                         | 12.878                             | 768.340                        | 1.50                            | 3.45                              | 6.71                         |
| 4 -               | 5  | 10.059                         | 12.878                             | 129.535                        | 2.00                            | 3.95                              | 7.21                         |
| 5 ~               | -6 | 2.689                          | 12.878                             | 34.635                         | 2.50                            | 4.45                              | 7.71                         |
| 6 -               | 17 | 4.175                          | 7.849                              | 32.768                         | 3.00                            | 6.20                              | 11.55                        |
| 12 -              | 24 | 0.000                          | 5.345                              | 0.000                          | 6.00                            | 10.70                             | 18.55                        |

# SECRETARIA DE ABRICULTURA Y RECURSOS HIDRAULICOS SUBSECRETARIA DE INFRAESTRUCTURA HIDRAULICA D.G.S.C.O.H. COORDINACION REGIONAL CENTRO

GENERACIUN DE HIDROGRAMAS POR EL METODO DEL H.U.T. DEL U.S.B.R.

FECHA: 11-24-1992

PROYECTU : LA LOMA

MUNICIPID : JILOTLAN DE LOS DOLDRES

ESTADO : JALISCO

| TIEMPO<br>(Hrs.) | 1000           | PERIODOS<br>10000 | DE | RETORNO | (Años) |
|------------------|----------------|-------------------|----|---------|--------|
| 0.00             | 0.000          | 0,000             |    |         |        |
| 0.25             | 74.209         | 0.113             |    |         |        |
| 0.50             | 148.419        | 0.226             |    |         |        |
| 0.75             | 235.952        | 98.796            |    |         |        |
| 1.00             | 323.484        | 197.367           |    |         |        |
| 1.25             | 414.253        | 312.536           |    |         |        |
| 1.50             |                |                   |    |         |        |
| 1.75             | 505.022        | 427.706           |    |         |        |
|                  | 596.810        | 547.314           |    |         |        |
| 2.00             | 665.314        | 466.886           |    |         |        |
| 2.25             | 638.456        | 788.873           |    |         |        |
| 2.50             | 607.417        | 879.96 <b>8</b>   |    |         |        |
| 2.75             | 559.257        | 844.541           |    |         |        |
| 3.00             | 510.082        | 803 <b>.905</b>   |    |         |        |
| 3.25             | 456.748        | 741.939           |    |         |        |
| 3.50             | 403.414        | 678.580           |    |         |        |
| 3.75             | 350.080        | 609 <b>.518</b>   |    |         |        |
| 4.00             | 296,747        | 540 <b>.456</b>   |    |         |        |
| 4.25             | 243.413        | 471.393           |    |         |        |
| 4.50             | 190.079        | 402.331           |    |         |        |
| 4.75             | 136.426        | 333.269           |    |         |        |
| 5.00             | 81.463         | 264-207           |    |         |        |
| 5.25             | 33.786         | 194.353           |    |         |        |
| 5.50             | 23,260         | 121.267           |    |         |        |
| 5.75             | 14.043         | 57.847            |    |         |        |
| 6.00             | 11.495         | 43.717            |    |         |        |
| 6.25             | 9.265          | 31.217            |    |         |        |
| 6.50             | 8.455          | 27.027            |    |         |        |
| 6.75             | 8.045          | 23.272            |    |         |        |
| 7.00             | 7.434          | 21.740            |    |         |        |
| 7.25             | 6.824          | 20.207            |    |         |        |
| 7.50             | 6.214          | 18.675            |    |         |        |
| 7.75             | 5. <b>6</b> 04 | 17.142            |    |         |        |
| 8.00             | 4.994          | 15.610            |    |         |        |
| 8,25             | 4.384          | 14.078            |    |         |        |
| 8.50             | 3.774          | 12.545            |    |         |        |
| 8.75             | 3.164          | 11.013            |    |         |        |
| 9.00             | 2.554          | 9.480             |    |         |        |
| 9,25             | 1.944          | 7.948             |    |         |        |
| 4.50             | 1.534          | 6.415             |    |         |        |
| 9,75             | 0.724          | 4.883             |    |         |        |
| 10.00            | 0.114          | 3.050             |    |         |        |
| 10.25            | 3.000          | 1.819             |    |         |        |
| 10.50            | 0.000          | 0.285             |    |         |        |
|                  |                |                   |    |         |        |

## SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS SUBSECHETARIA DE INFRAESTRUCTURA HIDRAULICA D.G.S.C.O.H. COORDINACION REGIONAL CENTRO

SENERACION DE HIDROGRAMAS POR EL METODO DEL H.U.I. DEL U.S.B.R.

FECHA: 11-24-1992

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

TIEMPO PERIODOS DE RETORNO (Años)

(Hrs.) 1000 10000

PERIODO DE RETORNO . GASIO MAXIMO VOLUMENES GENERADOS m3/seg Miles de M3

1000 665.314 6842.213 10000 879.968 9255.771

# 4.3.3 METODO DE TRANSPORTE DE GASTOS MAXIMOS

CUADRO 25

|               | ,                                               | · · · · · · · · · · · · · · · · · · ·           |
|---------------|-------------------------------------------------|-------------------------------------------------|
| AND<br>-      | ESTACION TEJONES<br>GASTO MAX. INST.<br>M3/SEG. | PROYECTO LA LOMA<br>GASTO MAX. TRAN.<br>M3/SEG. |
| 1955          | 61.60                                           | 38.70                                           |
| 1956          | 114.20                                          | 71,70                                           |
| 1957          | 57.90                                           | 36.40                                           |
| 1958          | 137.10                                          | 86.10                                           |
| 195 <b>9</b>  | 115.00                                          | 72,20                                           |
| 1960          | 187.00                                          | 117.50                                          |
| 1961          | 248.00                                          | 155,80                                          |
| 1762          | 454.00                                          | 285.20                                          |
| 1963          | 492.00                                          | 309.00                                          |
| 1964          | 263.00                                          | 165.20                                          |
| 1965          | 396.00                                          | 248.70                                          |
| 1966          | 122.00                                          | 76.60                                           |
| 1967          | 227.00                                          | 142.60                                          |
| 1 <b>9</b> 68 | 230.00                                          | 144.50                                          |
| 1969          | 270.00                                          | 169.60                                          |

#### 4.3.4 SELECCION DEL GASTO DE DISENO

Los gastos de diseño que serán asignados a el proyecto, corresponden a los generados por el modelo de precipitación — escurrimiento Hidrograma Unitario Triangular:

| Tr    | Qtr                |
|-------|--------------------|
| años  | m3/seg             |
| 1,000 | 665.314<br>879.968 |

Los gastos de 673.23~m3/seg. (Tr = 1,000 años) y 864.83~m3/seg. (Tr = 10,000 años), son los parámetros de calibración para definir cual de los métodos empíricos e hidrológicos puede representar mejor las condiciones de la cuenca de calibración y por similitud, de la cuenca en estudio.

Analizando los resultados obtenidos de las avenidas de diseño por los métodos empíricos, hidrológicos y de transporte de gastos máximos la diferencia entre valores mayor y menor es de sólo un 15%. El generado por el Hidrograma Unitario Triangular, con respecto a los métodos empíricos y de correlación con otra cuenca es intermedio.

Considerando que la diferencia entre valores al utilizar la fórmula de Gete, Hidrograma Unitario Triangular y Transporte de gastos máximos no son significativas, se considera conveniente recomendar valores muy parecidos a los obtenidos por el método de Transposición de cuencas.

### 4.4 TRANSITO DE AVENIDAS

### 4.4.1 BORDO LIBRE

El valor del bordo libre adoptado es de 1.724 metros.

## 4.4.2 REGULARIZACION DE AVENIDAS

Cuando se está en la etapa de diseño de una obra de excedencias, esta última operación implica un proceso de aproximaciones sucesivas, puesto que para estudiar la regulación en el vaso se requiere suponer conocidas las dimensiones del vertedor.

El trânsito de la avenida se efectuó utilizando los métodos de la Asociación Suiza de Ingenieros y el Numérico (Heún), cuadros 26-27.

De donde se obtuvo una altura de corona de 779.851 mts. con el Numérico y una longitud de cresta de 57 mts., fig. 8.

## COMISION NACIONAL DEL AGUA GERENCIA REGIONAL DEL LERMA-BALSAS DIRECCION DE INGENIERIA BASICA

FECHA: 11-23-1992

KK REGULARIZACION DE LA AVENIDA MAXIMA NO METODO NUMERICO DE HEUN

PROYECTO : LA LOMA

MUNICIPID : JILOTLAN DE LOS DOLORES ESTADO : JALISCO

CAPACIDAD : 8.3 Millones de m3

DATOS (CONSTANCIA DEL CALCULO):

|                                             | 10000 <b>Años</b>     |
|---------------------------------------------|-----------------------|
| GASTO MAXIMO DE ENTRADA                     | 879.9 <b>6</b> 8 m3/s |
| COEFICIENTE DE DESCARGA                     | 2 Adim                |
| ELEVACION DEL N.A.N                         | 775.3 msnm            |
| VALOR DEL BORDO LIBRE                       | 1.724 m               |
| COTA DE REFERENCIA                          | 775 ms.mm             |
| PENDIENTE DE LA RECTA DE REGRESION          | .5307735 Adim         |
| ORDENADA AL ORIGEN DE LA RECTA DE REGRESION | 6.531835 Adim         |
| INTERVALO DE TIEMPO DEL HIDROGRAMA          | .25 Hrs               |

\*\*\*\*\*\* RESULTADOS DE LA REGULARIZACION DE LA AVENIDA MAXIMA \*\*\*\*\*\*\*\*

DURACION DE TORMENTA = 10.5 Horas VOLUMEN ENTRANTE AL VASO = 9,246,304. m3 

| L.VERT | Q.REGU | CARGA S/V | SOBREALM. | N.A.M.E. | CORONA    |
|--------|--------|-----------|-----------|----------|-----------|
|        | (m3/s) | (m)       | (Mm3)     | (m≤nm)   | (discina) |
| 55.0   | 536.27 | 2.88      | -2.017    | 778.18   | 779.90    |
| 56.0   | 539.07 | 2.85      | -2.043    | 778.15   | 779.87    |
| 57.0   | 541.79 | 2.83      | -2.068    | 778.13   | 779.85    |
| 58.0   | 544.43 | 2.80      | -2.093    | 778.10   | 779.83    |
| 59.0   | 546.99 | 2.78      | -2.118    | 778.08   | 779.80    |
| 60.0   | 549.47 | 2.76      | -2,142    | 778.06   | 779.78    |

# COMISION NACIONAL DEL AGUA GERENCIA REGIONAL DEL LERMA-BALSAS

DIRECCION DE INGENIERIA BASICA

FECHA: 11-23-1992

<< REGULARIZACION DE LA AVENIDA MAXIMA >> METODO NUMERICO DE HEUN

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

CAPACIDAD : 8.3 Millones de m3

DATOS (CONSTANCIA DEL CALCULO): GASTO MAXIMO DE ENTRADA B79.968 (
COEFICIENTE DE DESCARGA 2 2 Adim
ELEVACION DEL N.A.N. 879.968 m3/s ELEVACION DEL N.A.N. 775.3 msnm · VALOR DEL BORDO LIBRE 1.724 m PENDIENTE DE LA RECTA DE REGRESION COTA DE REFERENCIA 775 กรกด .5307735 Adim ORDENADA AL ORIGEN DE LA RECTA DE REGRESION \_ \_ \_ 6.531835 Adim INTERVALO DE TIEMPO DEL MINDOCEAMA INTERVALO DE TIEMPO DEL HIDROGRAMA

\*\*\*\*\*\*\*\* RESULTADOS DE LA REGULARIZACION DE LA AVENIDA MAXIMA \*\*\*\*\*\*\*\*

DURACION DE TORMENTA = 10.5 Horas VOLUMEN ENTRANTE AL VASO = 9,246,304. m3

| ======================================= |        | *****     | .442222222    |                                        | *****                 | *== |
|-----------------------------------------|--------|-----------|---------------|----------------------------------------|-----------------------|-----|
| L.VERT                                  | Q.REGU | CARGA S/V | SOBREALM.     | N.A.M.E.                               | CORONA                |     |
| (m)                                     | (m3/s) | (m)       | (Mm3)         | (ឃុខសក្)                               | (msnm)                |     |
| 55666666                                |        | *****     | *******       | '===================================== | *                     | === |
| 30.0                                    | 436.61 | 3.76      | -1.146        | 779.06                                 | 780.78                |     |
| 35.0                                    | 463.34 | 3.53      | -1.364        | 778.83                                 | <b>78</b> 0.55 .      | , . |
| 40.0                                    | 484.91 | 3.32      | -1.560        | 778.62                                 | 780.35                |     |
| 45.0                                    | 502.47 | 3.15      | -1.736        | 778.45                                 | 780.17                |     |
| 50.0                                    | 520,83 | 3.00      | -1.882        | 778.30                                 | 780.03                |     |
| 55.0                                    | 536,27 | 2.88      | -2.017        | 778.19                                 | 779.90                |     |
| 60.0                                    | 549.47 | 2.76      | -2.142        | 778.06                                 | 779,78                |     |
| 45.0                                    | 560.82 | 2.65      | -2.258        | 777 <b>.9</b> 5                        | 779.67                |     |
| 70.0                                    | 571.01 | 2.55      | -2.364        | 777.85                                 | 779.58                |     |
| 75.0                                    | 582,34 | 2.47      | <b>-2.456</b> | 777.77                                 | 779.49                |     |
| 80.0                                    | 592.41 | 2.39      | -2.543        | 777.69                                 | 779.42                |     |
| 85.0                                    | 601.39 | 2.32      | -2.624        | 777.62                                 | 779.35                |     |
| 90.0                                    | 409.43 | 2.25      | -2.702        | 777.55                                 | 779.28                |     |
| 95.0                                    | 616.63 | 2.19      | -2.775        | 777.49                                 | 779.22                |     |
| 100.0                                   | 623.10 | 2.13      | -2.845        | 777.43                                 | 779.16                |     |
| *========                               |        |           |               |                                        | 3332 <b>6</b> 5565656 | :== |

### SECRETARIA DE AGRICULTURA Y RECURSOS HIDRAULICOS D.G.S.C.O.H. COORDINACION REGIONAL CENTRO

FECHA: 23/11/1992

2.00

## REGULARIZACION DE LA AVENIDA MAXIMA (Método de la Asociación Suiza de Ingenieros)

PROYECTO : LA LOMA

MUNICIPIO: JILOTLAN DE LOS DOLORES

ESTADO : JALISCO

CAPACIDAD TOTAL = 8,300,000 m3

|         | CHEMOTORD LOTHE = 8,000,000 mg                                                                                                     |                                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 665.314 | ier. PERIODO DE RETORNO(Años) = 1000 GASTO MAXI                                                                                    | = (e/Sm) OM                     |
| 879.968 | 2do. PERIODO DE RETORNO(AROS) = 10000 GASTO MAXI                                                                                   | MD(m3/s) =                      |
| 877.766 | TIEMPO DE CONCENTRACION (Hrs) VALOR DE K [Area del NAN+1 m-Area del NAN] (Ha) SUPERFICIE DEL AREA DEL N.A.N. (Ha)                  | 4.20<br>66.60                   |
|         | ELEVACION DEL N.A.N. (m.s.n.m.) LONGITUD DEL CAUCE PRINCIPAL (km) VALOR DE N En veces que Tr > TcJ (Adim) VALOR DEL GASTO BASE (%) | 775.30<br>37.00<br>2.50<br>0.00 |
|         | LONGITUD DEL PRIMER VERTEDOR (m) INCREMENTO ENTRE CADA LONGITUD DE VERTEDOR (m) VALOR DEL BORDO LIBRE (m)                          |                                 |

\*\*\*\*\*\*\* RESULTADOS DE LA REGULARIZACION DE LA AVENIDA MAXIMA \*\*\*\*\*\*\*\*\*
DURACION DE LA TORMENTA = 9.92 Hrs VELOCIDAD = 3.43 m/s

COEFICIENTE DE DESCARGA (Adim)

|       | AXIMO 1 =<br>ENTRANTE |       |        | 7,921, <b>3</b> 01 ( |         | E RETORNO | = 1000 Años |
|-------|-----------------------|-------|--------|----------------------|---------|-----------|-------------|
| LVERT | CŁ                    | T REG | Q REG  | CARGA S/V            | NAME 1  | CORONA 1  | CORONA 3    |
| (m)   |                       | (Hrs) | (ന3/ജ) | (m)                  | (៣៩៩៣)  | (msnm)    | (കടറക)      |
| 30.00 | 60.00                 | 4.309 | 417.02 | 3,442                | 778.942 | 780.442   | 780.666     |
| 40.00 | 80.00                 | 4.082 | 454,43 | 3.184                | 778.484 | 779.984   | 780.208     |
| 50.00 | 100.00                | 3.912 | 48i.4i | 2.851                | 779,151 | 779.651   | 779,875     |
| 40.00 | 120.00                | 3.742 | 502.36 | 2.597                | 777.897 | 779.397   | 779.621     |
| 70.00 | 140.00                | 3.685 | 517,91 | 2.392                | 777.692 | 779.192   | 779.416     |
| 80.00 | 140.00                | 3.572 | 531.40 | 2.226                | 777.526 | 779.026   | 779.250     |

GASTO MAXIMO 2 = 879.968 m3/s PERIODO DE RETORNO = 10000 Años VOLUMEN ENTRANTE AL EMBALSE = 10,477,000 m3 CL T REG Q REG CARGA S/V NAME 2 CORDNA 2 CORDNA 4 LVERT (m) (Hrs) (m3/s) (m) (msnm) (msnm) (msnm) 4.252 30,00 60.00 567.32 4.471 779.772 781,272 781.496 80.00 3,949 616.89 3.903 779,203 780.927 40.00 780.703

| 50.00 | 100.00 | 3.799 | 651.98 | 3.490 | 778.790 | 780.290 | 780,514 |
|-------|--------|-------|--------|-------|---------|---------|---------|
| 60.00 | 120.00 | 3.685 | 678.22 | 3.173 | 778.473 | 779.973 | 780.197 |
| 70.00 | 140.00 | 3.629 | 697.97 | 2.918 | 778.218 | 779.718 | 779.942 |
| 80.00 | 160.00 | 3.515 | 715.24 | 2.714 | 778.014 | 779,514 | 779.738 |

## COMISION NACIONAL DEL AGUA GERENCIA REGIONAL DEL LERMA-BALSAS DIRECCION DE INGENIERIA BASICA

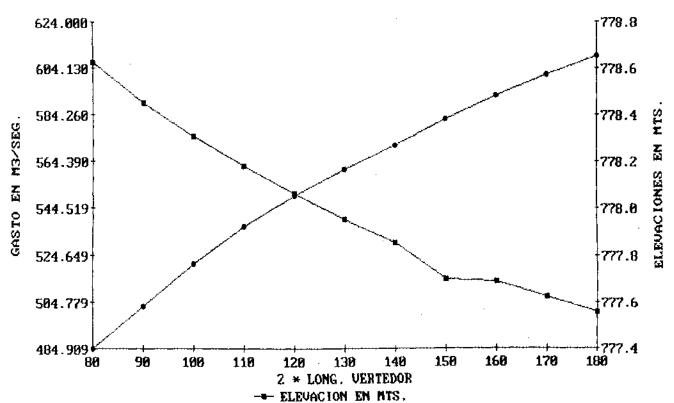
FECHA: 11-23-1992

- << REGULARIZACION DE LA AVENIDA MAXIMA >> METODO NUMERICO DE HEUN

PROYECTO : LA LOMA

MUNICIPIO : JILOTLAN DE LOS DOLORES ESTADO : JALISCO CAPACIDAD : 8.3 Millones de m3

| DATOS (CONSTANCIA DEL CALCULO | DATOS | (CONSTANCIA | DEL | CALCULO | : |
|-------------------------------|-------|-------------|-----|---------|---|
|-------------------------------|-------|-------------|-----|---------|---|


| PERIODO DE RETORNO                 | 0000 Años     |
|------------------------------------|---------------|
| GASTO MAXIMO DE ENTRADA            | 879.968 m3/s  |
|                                    | 2 Adim        |
|                                    | 775.3 msnm    |
|                                    | 1.724 m       |
| COTA DE REFERENCIA                 | 775 msnm      |
|                                    | .5307735 Adim |
|                                    | 6.531835 Adim |
| INTERVALO DE TIEMPO DEL HIDROGRAMA |               |

\*\*\*\*\*\*\* RESULTADOS DE LA REGULARIZACION DE LA AVENIDA MAXIMA \*\*\*\*\*\*\*\*

DURACION DE TORMENTA = 10.5 Horas VOLUMEN ENTRANTE AL VASO = 9,246,304. m3

| .VERT                  | Q.REGU | CARGA S/V                               | SOBREALM. | N.A.M.E.   | CORONA |
|------------------------|--------|-----------------------------------------|-----------|------------|--------|
| (m)                    | (m3/s) | (m)                                     | (Mm3)     | (തടാന)     | (നടാന) |
| <b>*</b> = = = = = = = | **=**  | ======================================= |           | ********** | ****** |
| 55.0                   | 536.27 | 2.88                                    | -2.017    | 778.18     | 779.90 |
| 56.0                   | 539.07 | 2.85                                    | -2.043-   | 778.15     | 779.87 |
| 57.0                   | 541.79 | 2.83                                    | -2.068    | 778.13     | 779.85 |
| 58.0                   | 544.43 | 2,80                                    | -2.093    | 779.10     | 779.83 |
| 59.0                   | 946.99 | 2.79                                    | -2.118    | 778.09     | 779.80 |
| 60.0                   | 549.47 | 2.76                                    | -2,142    | 778,06     | 779.78 |

FIGURA 8
ALTERNATIVA LONGITUD DE VERTEDOR



#### CONCLUSIONES Y RECOMENDACIONES

Los escurrimientos basados en el método de similitud de cuencas (51,535.39 Miles de m3.), son en un 57% mayores que los obtenidos por el método del Coeficiente (22,182.070 Miles de m3.)

Para el Funcionamiento de vaso, se optó por considerar los volúmenes escurridos por el método del Coeficiente de Escurrimiento.

En políticas de operación, aún cuando la capacidad propuesta de 8.3 Mm3. se encuentre en los límites permisibles dentro de los criterios de diseño como es el % de aprovechamiento de 63.80% y 0.74% de deficiencia media anual, se sugiere se lleve a cabo una optimización de vaso.

Las deficiencias de vaso deberán ser del 3-5%, un 70% de aprovechamiento y los años con déficit durante el período de estudio no serán mayores de 7.

Esto con la finalidad de que exista una óptima relación entre el recurso hídrico y la superficie que se pretende beneficiar.

Así mismo es conveniente que la capacidad inicial se defina por la curva masa, o el algoritmo de pico secuente.

En el estudio de avenidas, se determinaron algunas características físicas de la cuenca que permitirán tanto la aplicación de fórmulas y métodos empíricos para los gastos de diseño, como la realización de análisis de relación lluvia-escurrimiento para definir la forma del hidrograma de la avenida. Otro criterio empleado en definir gastos máximos es el de Transposición de Cuencas, que determina gastos para la cuenca en estudio a partir de los registrados en otra cuenca.

Con la muestra resultante se recurrió a técnicas probabilísticas para ajustar los datos a algún tipo de distribución.

Las avenidas de diseño definidas por el Hidrograma Unitario Triangular para los períodos de retorno de 1,000 y 10,000 años, se consideran aceptables, tomando en cuenta la información existente y la deducida por correlación con una cuenca adyacente.

Finalmente con el objeto de definir la elevación y la longitud de la cresta, se determinó la avenida de diseño y con ella se realizó la regulación con los métodos Asociación Suiza de Ingenieros y el Numérico.

No se expone el criterio suizo por carecer de información. Se le considera método empírico, ya que para llegar a la definición del NAME sólo toma en cuenta el área correspondiente a la elevación del NAN mas 1 metro. En éste análisis hidrológico sus valores sálo se consideran como punto de referencia.

Como una conclusión relevante de este análisis para llevar a cabo la ejecución de este proyecto, se deberá hacer una revisión de las condiciones hidrológicas de la región.

Existiendo aguas abajo del sitio seleccionado para este proyecto la Presa Chilatán.

## BIBLIOGRAFIA

Aparicio, M. F. J. Fundamentos de Hidrología de Superficie. Editorial Limusa, 1989, 303 P.

Campos, A. D. F. Dimensionamiento de la capacidad para sedimentos en los embalses. División de Estudios de Posgrado de la Facultad de Ingeniería de la U. N. A. M. México, 1980. 173 P.

Campos, A. D. F. Manual para la estimación de avenidas máximas en cuencas y presas pequeñas. 1982. Talleres Gráficos de la Nación.

Campos, A. D. F. Procesos del Ciclo Hidrológico. San Luís Potosí. Universidad Autónoma San Luís Potosí, 1984. v. I, tomo 1.

Campos, A. D. F. Procesos del Ciclo Hidrológico. San Luís Potosí, Universidad Autónoma San Luís Potosí, 1984. v. I, tomo 2.

Campos, A. D. F. Propuesta de criterios para la elaboración de Estudios Hidrológicos. I. Ingeniería Hidraúlica en México. (México). 6(3): 23-40 pp. 1991.

Consultores, S. A. Recomendaciones para el diseño y revisión de estructuras para el control de avenidas. 1978.

CRIHC. Estudio de avenidas del proyecto P. A. "Ortega", Mpio. de Irapuato, Gto.

Fuentes, M. D., Dominguez, M. R. y Franco, V. Relacion entre Precipitación y Escurrimiento. Cap. A.1.5 del Manual de Diseño de Obras Civiles. CFE. México, 1980.

Fuentes, M. O. y Franco, V. Tránsito de avenidas en vasos. Cap. A.1.8. del Manual de Diseño de Obras Civiles. CFE. México, 1980.

Linsley, K. R., Kohler, M. A. y Paulus, L. H. J. Hidrología para ingenieros. Alejandro Deeb, Jaime Ivan Ordoñez y Favio Castrillón. Bogotá, Colombía. Editorial McGraw-Hill Latinoamericana, S. A. 1977. 386 P.

Netto, A. J. M. y A. A. G. de. Manual de Hidraulica. Traductor. Guillermo, Acosta Alvarez. México, Tec-Cien. Harla, 1976. 578 P.

O, A. y Greenham, A. A. Instructivo para Estudio de Azolvesa 2 . Edición. 1948.

Palacios, V. E. Manual para proyectos de pequeñas obras hidráulicas para riego y abrevadero. Instructivo de Gabinete. 1977. Palacios, V. E. y Fernandez, G. R. Estimación de los requerimientos de riego para nuevos proyectos. Simposio Internacional para el desarrollo de los Recursos Hidráulicos. [s. f.].

Planeación, S. y C. Estudio Hidrológico Definitivo de la Presa El Salto, Mpio. Valle de Guadalupe, Jal. 1989. 75 P.

Rodríguez, G. J. A. Estudio Hidrológico del Proyecto "El Voladero" en el municipio de Zapotlanejo, Jal. [s. f.].

Rodríguez, T. F. Elementos del Escurrimiento Superficial. Chapingo, México. UACH. PATENA A.C. 1981. 225 P.

Springall, R. S. Hidrología. Primera parte. Universidad Nacional Autónoma de México. 1970.

Snayder, F. F. La Hidrología del diseño del vertedor en grandes presas con datos adecuados. Memorandum Técnico Num. 1. Traducción del Ing. Pedro Díaz Herrera. 1968.

Torres, H. F. Obras hidraúlicas. Editorial Limusa. México. Segunda reimpresión. 1983.

Velazco, S. O. Pregas de Derivación, Modelo México 4, 1980.

Villavicencio, D. E., García, B. S. y R. T. V del. Curso de Capacitación para Ingenieros Residentes de Estudios Específicos. 1979. 122 P.

Zamudio, M. J. y Barberena, G. A. Proyecto de las Obras de Pequeña Irrigación, Segunda Parte. Memorandum Técnico Num. 145. 1959.