UNIVERSIDAD DE GUADALAJARA

CENTRO UNIVERSITARIO DE CIENCIAS BIOLOGICAS Y AGROPECUARIAS

DIVISION DE CIENCIAS VETERINARIAS

EVALUACION DE UN ANALOGO DE PROTEINA COMO SUSTITUTO DE HARINA DE PESCADO EN RACIONES PARA AVES DE PORTURA

TESIS PROFESIONAL
QUE PARA OBTENER EL TITULO DE
MEDICO VETERINARIO Y ZOOTECNISTA
P R E S E N T A
P.M.V.Z. VICENTE CASILLAS RODRIGUEZ
DIRECTOR DE TESIS:
M. EN C. IRMA ELIZONDO ESPINOZA
A S E S O R D E T E S I S:
M.V.Z. LUIS RODRIGUEZ SALGADO
ZAPOPAN, JAL DICIEMBRE DE 1994

Dedicatoria

A MIS PADRES:

J. Jesús Casillas Martín Tomasita Rodríguez de Casillas Por la educación, confianza, comprensión y amor que me dieron, ya que para mí, la preparación profesional es la mejor herencia que me pudieron dar.

A MIS HERMANOS:

Norma Rodrigo Por su apoyo y cariño.

A MI ESPOSA:

Hilda M. Gómez de Casillas Por su amor y apoyo en la superación de mi vida.

A MIS HIJOS:

Myriam Vicente Por la luz de esperanza y alegría que me ofrecen.

Agradecimiento

A DIOS:

Por darme la oportunidad de vivir.

A MI DIRECTOR DE TESIS Y ASESOR:

M. en C. M.V.Z. Irma Elizondo Espinoza M.V.Z. Luis Rodríguez Salgado Un sincero agradecimiento por su orientación tan profesional y un gran valor humano representado por la amistad.

AGROPECUARIA CALDERON:

Por la amabilidad de facilitarme sus instalaciones.

A LA UNIVERSIDAD Y MAESTROS DE LA F.M.V.Z.:

Por ser el impulso de mi desarrollo profesional y académico.

A LA H. COMISION DE TESIS.

AL H. JURADO

A TODOS MIS AMIGOS Y COMPAÑEROS.

EVALUACIÓN DE UN ANALOGO DE PROTEÍNA COMO SUSTITUTO DE HARINA DE PESCADO EN RACIONES PARA AVES DE POSTURA.

CONTENIDO

	Página
RESUMEN	Х
INTRODUCCION	1
PLANTEAMIENTO DEL PROBLEMA	6
JUSTIFICACIÓN	7
HIPOTESIS	8
OBJETIVOS	9
MATERIAL Y METODOS	10
RESULTADOS	17
DISCUSION	31
CONCLUSIONES	32
ANEXOS .	33
BIBLIOGRAFIA	45

RESUMEN

En la granja Avícola Calderón situada en el Km. 45 carretera Guadalajara-Tepatitlan Mpio. de Zapotianejo Jal., la cual presenta un clima semiseco y con invierno benigno, teniendo una precipitación pluvial anual de 940 mm., con una altura de 1620 mts. sobre el nivel del mar: se realizo un trabajo experimental entre dos fuentes de proteína, utilizando Harina de Pescado contra un análogo Protei-60-AMO*.

Se utilizaron seis casetas; a una caseta con 17,714 aves se le ofreció la dieta conteniendo el análogo de proteína y las cinco restantes con un total de 87,636 aves consumieron la dieta que contenía Harina de pescado. Ambas dietas fueron isocaloricas e isoproteicas con los mismos ingredientes, la única variación fue la fuente de proteína. Todas las aves de postura fueron de 24 semanas de edad.

El manejo fue igual para las seis casetas, se dieron las mismas horas luz, se sirvió alimento al mismo tiempo; así como las labores de limpieza, recolección y selección y empacado de huevo. También se realizaron los registros de producción para estimar la calidad total en % de huevo normal, blando y roto. Ademas con los registros de consumo de alimento y peso del huevo se determino la conversión alimenticia y finalmente se evalúo la mortalidad de las aves.

La dieta que contenía el alalogo de proteína, las aves mostraron a las 40 semanas de edad un efecto detrimental, disminuyendo la producción de huevo y aumentando la mortandad. Por lo que se mando analizar los huesos largos como son tibia y fémur haciéndolos harina de hueso, teniendo como resultado: 23.06 ppm de plomo,358.10 ppm de fierro, 0.516% de Fluor, 3.19 ppm de cromo, 7.61% de fésforo y 17.02% de calcio, lo cual nos indica el grado de toxicidad en las aves debido a que el análogo proteico de esta dieta traía productos químicos. En la dieta con harina de pescado no presento ningún cambio negativo en los parámetros productivos, por lo que a la caseta 1 la de prueba se le cambio la fuente de proteína dando harina de pescado la cual en la semana 44 se estableció sus parámetros de producción y bajo la mortalidad, dando como resultado que la fuente de proteína dado por la harina de pescado es de mejor calidad flutricional.

^{*}Nombre comercial del análogo de proteína.

INTRODUCCIÓN

La industria avícola nacional la que hoy conocemos como el sector pecuario mas dinámico y evolutivo es el resultado de la gran transformación que en esta se viene dando desde finales de la década de los cuarenta y principio de los cincuentas. Esta gran industria actual es el resultado de grandes esfuerzos de los hombres y visionarios que la iniciaron y que hoy se ve el fruto de su arduo trabajo, en aras de lograr la autosuficiencia en productos avipecuarios como pollo y huevo.(13).

Aun cuando puede apreciarse al gran desarrollo avícola, se nota también mucha inestabilidad económica en la actividad, emanada principalmente de la situación actual por la que atraviesa el país en general y que repercute directamente en la industria avícola nacional.(13).

Por otra parte el desequilibrio entre los factores de la producción, es decir, costos de producción elevados principalmente por el constante y desmedido incremento de los insumos: el avicultor observa como sus materias primas tales como la pasta de soya, sorgo, harina de pescado, aditivos, suplementos, empaques, transportes, servicios, etc., se incrementan a un ritmo mayor que los precios que sus productos alcanzan en el mercado.(13).

Aunado a lo anterior tenemos la drástica caída del poder adquisitivo del grueso de la población, quienes son los consumidores potenciales de productos avícolas. Sin lugar a dudas se ha venido observando un gran decremento en el consumo de pollo y huevo por la falta de capacidad o poder adquisitivo.(13).

La industria avipecuaria mexicana se desarrollo a un ritmo extraordinario en la segunda mitad de los anos setentas y principios de los ochentas. Este crecimiento motivado por políticas desarrollistas del ultimo sexenio ocasiono también una demanda de alimento balanceado para cumplir con las necesidades de la población animal. Por ende también se incremento de una manera dramática la necesidad de ingredientes para producir el alimento balanceado.(27).

Desgraciadamente para el país, el crecimiento avipecuario supero por mucho al crecimiento agrícola, por lo que se requirieron de importaciones de grasas y fuentes proteicas para poder cumplir con las necesidades alimenticias que la población pecuaria demanda.(27).

Los retos en la avicultura se presentan día a día, y así mismo hay que resolverlos, cada vez con mayor visión empresarial, porque la avicultura de hoy y del mañana, exige y exigirá, que quienes le manejan, sean empresarios visionarios, capaces y eficaces. (28).

La Unión Nacional de Avicultores mediante sus datos estadísticos recientes, nos dan una relación de producción avícola nacional como se observa en el cuadro No. 1 el cual muestra un censo de aves del mes de Junio de 1994. (29)

Con especial interés en el área de la nutrición proteica se ha podido evaluar la dependencia que se tiene del exterior y el cuadro No. 2 muestra claramente que la industria avipecuaria depende de por menos el 50% de proteína de importación. Es por todo esto que cualquier esfuerzo que se haga para disminuir esta dependencia será en bien del país.(25)

Para expandir la producción de aves de corral, se requiere, en primer termino eficientar la industria de los alimentos balanceados y la búsqueda de ingredientes que nos permitan mejores alternativas de nutrición y economía, ya que el alimento representa el rengión de mas alto costo de las explotaciones.(2).

La sustitución permanente de ingredientes en raciones es una forma de abatir los costos de producción pecuaria en un ambiente económico caracterizado por una variación constante con tendencia al alza y escasez de insumos.(18).

En la nutrición animal cuando un alimento sustituye a otro, este debe de poseer al menos, igual calidad nutricional del que va a sustituir, con lo que se evitara la complejidad en el balanceo de las raciones con posible repercusión en un cambio de los parámetros productivos en que se basa el manejo de la granja.(18).

UNION NACION DE AVICULTORES

CENSO AVICOLA DE JUNIO DE 1994

	CAPACIDAD	EXISTENCIA			CAPACIDAD	TOTAL DE			en crianza	
NOMBRE DE LA	INSTALADA	PONEDORAS	PONEDORAS	PONEDORAS	Instalada	AVES EN			N A S	
ASOCIACION	PONEDORAS	EN PRODUC.	ler CICLO	2do CICLO	CRIANZA	CRIANZA	1 - 5	6 - 10	11 - 15	16 - 20
JALISCO										
GUADALAJARA	900,000	694,671	346,832	244,230	203,000			,		
LAGOS DE MORENO	2,419,080	1,925,934	1,611,194	173,042	1,053,598	833,948	2 60, 739	222,313	,	
CD. GUZHAN	789,200	644,048	260,539	347,494	139,000	125,013	27,883	73,078	24,052	0
TEPATITLAN	18,429,583	13,677,903	10,019,542	3,658,361	6,100,522	4,315,752	1,662,168	618,080	736,444	1,299,000
SUB-TOTAL	22,537,863	16,942,556	12,238,107	4,423,127	7,496,120	5,324,713	2,053,790	963,471	881,899	1,528,500
NUEVO LEON										
STA CATARINA V GARCI	2,965,832	2,492,751	1,719,830	772,921	904,000	714,574	60,000	119,000	297,378	238,100
ALLENDE	1,317,000	1,270,000	1,145,300	124,700	320,000	0	80,000	80,000	80,000	80,000
GUADALUPE	863,680	307,380	281,191	26,189	71,180	44,443	18,147	17,025	9,271	0
SABINA HIDALGO	487,090	369,400	293,403	147,277	80,000	71,280	0	0	0	0
SUB-TOTAL	5,633,602	4,439,531	3,439,724	1,071,087	1,375,180	830,297	158,147	216,025	386,649	318,100
SAN LUIS POTOSI	51,000	41,000	0	0	10,000	10,000	0	0	0	. 0
VALLE DE GUAYMAS	525,240	351,000	306,000	45,000	570,000	317,545	0	107,545	105,000	105,000
TECAMACHALCO, PUEBLA	4,180,340	3,449,690	2,629,856	826,034	1,289,000	539,204	95,038	195,205	192,656	56,300
CHIHUAHUA CHIH.	158,000	97,000	92,000	5,000	40,000	40,000	0	0	0	0
GOMEZ PALACIO, DGO.	2,737,773	215,393	1,896,454	183,125	917,424	741,547	195,302	297,994	205,781	114,400
LOS MOCHIS , SINALOA	2,547,050	1,934,516	139,180	5,426	812,152	245,314	908,812	981,141	1,139,894	391,900
HORELOS	60,000	0	0	0	0	18,000	0	0	0	0
TEPIC, NAYARIT	595,000	540,400	340,200	200,200	112,000	95,000	0	28,000	67,000	0
AGUASCALIENTES	590,000	457,500	377,800	79,700	223,600	87,100				
		·								
TOTAL	39,615,868	28,468,586	21,459,321	6,838,699	12,845,476	8,248,720	3,411,089	2,789,381	2,978,879	2,514,100

REVISIÓN HISTÓRICA DE IMPORTACIONES MEXICANAS (1000 TONS)..

CUADRO 2

AÑO	SORGO	SOYA	H. DE CARNE	H.DE PESCADO	GIRASOL	OTROS	PROTEÍNA	REO.	8
1975	-	3	7	47	-	-	-	-	
1976	-	412	2	. 31	-	-	-	~	
1977	-	900	2	14	-	-	418.3	43	
1978	~	900	-	15	450	-	562	59	
1979	1500	650	2	40	150	-	437	41	
1980	2500	1100	3	4.5	307	-	733	66	
1981	2500	1350	3	40	400	100	360	68	
1982	1000	700	3	30	400	80	514	38	
1983	3500	850	2	10	450	200	827.5	65	
1984	2000	1000	2	30	500	-	650	48	
1985	-	-	-	30	~	-	-	-	
1986	-	-	•	20	-	-	•	-	

Por otro lado, los substitutos proteicos utilizados en la alimentación animal en general son subproductos de recuperación de rastros, entre otros están las harinas de carne y hueso, la harina de desecho de aves y la harina hidrolizada de plumas, desechos de tenería: los cuales tienen una amplia aceptación por su contribución a la alimentación animal: sin embargo, como México no tiene una industria de ganado de carne considerable, ni una industria de pollos o pavos que se aproximen en importancia a las de los Estados Unidos, la recuperación de proteínas animales es mucho mas fragmentaria y la uniformidad de las materias primas que deben procesarse es por consiguiente mas difícil de mantener, por lo que la calidad del producto final es muy variable.(1)

Un programa efectivo de alimentación cubre tres objetivos: determinar los requerimientos nutricionales de las aves; mantener los programas de producción; utilizar las dietas alimentarias adecuadas y de mas bajo costo. Cuando hablamos de dietas alimenticias de bajo costo, queremos decir que se debe utilizar la combinación adecuada de ingredientes alimenticios que proporcionen los requerimientos nutricionales de las aves al mas bajo costo posible, con ganancias máximas para el productor. El exceso de nutrientes o elementos tóxicos en cada porción alimentaria se reduce al mínimo.(2)

PLANTEAMIENTO DEL PROBLEMA

Dentro de la búsqueda de soluciones que disminuyen el costo de producción avícola, se proyecto una prueba de campo y el empleo de dos diferentes raciones de uso común en la granja, en donde la fuente de variación fue el ingrediente proteico de origen animal en la dieta para determinar el efecto de este insumo sobre los parámetros productivos de las aves ponedoras.

JUSTIFICACION

En estos años de cambios políticos y económicos en el cual se está frente a un Tratado de Libre Comercio, que exige una mayor calidad y eficiencia en nuestros productos sean industriales o agropecuarios, la avicultura necesita producir mas o menos recursos y así obtener una mayor calidad a un mínimo costo para poder competir con el producto extranjero.

En el presente trabajo se pretende probar que un ingrediente a base de desechos de origen animal puede substituir la Harina de Pescado sin demerito de la producción en aves de postura.

HIPOTESIS

Los ingredientes a base de subproductos de origen animal son buenas fuentes de proteínas y aminoácidos por lo tanto, estos al sustituir en la ración a los ingredientes proteicos como aminoácidos de buena calidad como la harina de pescado no se afectara la productividad de las aves de postura.

OBJETIVO GENERAL

Estimar el efecto de la inclusión de un análogo de proteína contra harina de pescado en raciones para aves de postura sobre sus parámetros productivos.

Evaluar la factibilidad económica del uso de un análogo de proteína sustituyendo harina de pescado en la ración, en la producción de huevo.

OBJETIVOS PARTICULARES

Evaluar el efecto entre las los fuentes de proteína como son la harina de pescado y el análogo de proteína observándose en:

- a) Porcentaje de huevo total.
- b) Porcentaje de huevo normal.
- c) Porcentaje de huevo roto.
- d) Porcentaje de huevo blando.
- e) Peso del huevo (gr).
- f) Porcentaje de mortalidad
- g) Consumo de alimento (gr).
- h) Conversión alimenticia.

MATERIAL Y METODO

1. SITUACIÓN GEOGRÁFICA Y CLIMATOLÓGICA DE LA GRANJA.

El presente trabajo se realizo en la Granja Avícola Calderón situada en el Km. 45 carretera Guadalajara-Tepatitian. Mpio de Zapotlanejo Jal.

Su clima es semiseco y con invierno benigno. Tiene una precipitación pluvial anual de 940 mm. con una altura de 1620 mts. sobre el nivel del mar.

Los cambios climatológico mas comunes durante el año son los siguientes:

El período de heladas abarca aproximadamente de Noviembre a Marzo, el de lluvias es aproximadamente de Mayo a Septiembre. Los vientos ciclónicos son de Junio a Septiembre y la evaporación media anual es de 2145.50.

2. CARACTERIZACION DE LAS CASETAS.

Se utilizaron seis casetas avícolas que presentan las siguientes características:

120 mts. de largo por 13 mts. de ancho.

Su altura lateral es de 2.70 mts. altura central 4 mts. con techos de asbesto a dos aguas. Las pinas están cerradas con material, presentando una puerta delantera de 1.30 mts. y la de atrás de 3.30 mts. por 2.25 mts.

Las laterales de las casetas están cerradas con tela pajarera para evitar la entrada de pájaros y roedores para preservar la higiene y salud de las mismas.

Se manejan cortinas de lona a lo largo de la caseta en ambos lados con un ancho de 1.20 mts.: son movibles con un winche para regular el viento, agua y frío.

Entre caseta y caseta hay una distancia de 15 mts. y en el interior de la caseta hay espacio libre de 4.15 mts. por 13 mts. en la parte delantera y 3.35 mts. por 13 mts. en la parte trasera (estas son para el manejo de cajas, carro, etc.).

Tiene 5 pirámides de jaula invertida en las cuales cada nido mide 37.5 cms. de frente, 33 cms. de fondo, 41 cms. de altura de la parte de atrás, 45 cms. de altura del frente y 20 cms. de recolector de huevo. El calibre de alambre que se utiliza en el piso es del número 12 y esta a una distancia de 2.5 cms.; el del frente es del número 14 y esta a una distancia de 5.5 cms. de separados. Las laterales y las de arriba del nido son del calibre número 12 y están separados cada 3 cms. (el alambre es galvanizado).

El total de nidos en la caseta es de 6,000; siendo un nido para 3 aves, dando una superficie por ave de 412.5 cms. 3.

La altura de los nidos de abajo, sobre el piso, es de 67 cms. y del recolector del huevo de 58 cms,; los nidos de arriba tienen una altura de 1.20 mts. y el recolector de huevo de 1.10 mts.

La apertura para el movimiento del huevo al recolector es de 6 cms.

Cada banqueta mide 84 cms. de ancho y las fosas 1.60 mts. de ancho cada una.

Cada 1.12 mts. se encuentra un monopie que sirve como soporte para cada 6 nidos.

2.1. ILUMINACION.

Las instalaciones eléctricas son lineales y hay focos cada 3 mts. de 2.5 W. con una altura de 1.90 mts. teniendo 39 focos por banqueta lo cual de un total de 234 focos.

Para la iluminación se utilizo un programa ascendente de acuerdo a las recomendaciones para la línea de ave dando un fotoperíodo de 16 hrs. entre luz natural y artificial. Se administra un pie vela de intensidad luminosa por ave.

2.2. ABASTECIMIENTO DE AGUA A LAS CASETAS.

Los bebedores son automáticos y hay 1 por cada 2 nidos, lo cual de un total de 3,000 bebedores. La fuente de agua es rodada y se recibe en un aljibe de donde se bombea a un tinaco general de 10,000 litros que es metálico a una altura de 4.10 mts.

Hay un equipo de potabilización que funciona por medio de hipoclorito de sodio 1 p.p.m. al estarse llenando el tinaco.

De aquí se pasa a los tinacos individuales de asbesto de 1,000 lts. con una altura de 2,90 mts. que tiene cada caseta para su abastecimiento.

3. DISTRIBUCIÓN DE AVES.

Se realizo una limpieza y desinfección de las casetas para recibir las pollas que se mandan de crianza y desarrollo a las 18 semanas de edad.

Se distribuyen al azar 106,900 aves en postura de la linea DEKALB-XL, entre las 6 casetas.

3.1. ALIMENTACIÓN.

Cada caseta a través de una tolva para almacenamiento con una capacidad de 10 ton., con un sistema de gusano accionado eléctricamente mueve el alimento al interior de las casetas, pasando a los carros distribuidores con capacidad para 200 kgs. que mide 64.5 cms. de ancho, 46.5 cms. de alto y 1.05 mts. de largo. De aquí se distribuyen a los comederos los cuales tienen las siguientes características44: son lineales y miden 15 cms. de frente, 9 cms. de respaldo y 15 cms. de ancho; son de plástico con el fondo en forma de "U".

El alimento se ofreció a voluntad a las aves, de la caseta para prueba se les dio la ración con el análogo que es un subproducto de origen animal llamado Protei-60-Amo (cuadro No. 3), y el resto que fueron 5 casetas se les ofreció la ración conteniendo harina de pescado la que fue considerada como testigo. (cuadro No.4 y No. 5).

El subproducto que se utilizo como substituto de la harina de pescado contiene en su análisis bromatológico las siguientes características nutricionales que se muestran en el cuadro No. 3

· CUADRO 3

Composición nutricional (en porciento), del análogo de proteína Protei-60-Amo. *

	8
Proteina min	60.00
Digestibilidad de la proteína min	85.00
Nitrógeno no proteico max	0.50
Grasa min	10.00
Ceniza max	20.00
Fibra max	1.80
Humedad max	8.00
Antioxidante	1 DOSIS.
Putrefacción	NEGATIVA
Arginina	2.858
Lisina	3.250
Methionina	1.291
Meth. + Cis	1.986
Triptofano	0.541
Histidina	1.572
Leucina	5.482
Isoleucina	1.658
Fenilalanina	2.511
Fenil + Tiro	3.958
Glicina	6.858
Valina	3.147
Treonina	2.322
Fósforo T	3.363
Fósforo A	3.121
Acidolinoleico	1.561
Sal	1.196
Sodio	0.441
Fluor	0.000
Calcio	5.400

^{*} Nombre comercial del subproducto.

Composición del protei-60-Amo: Harina de pescado, pasta de carne, migaja, sangre, pluma, viscerados de rastro, aminoácidos, Antioxidante y aceites.

Valor nivelado con aceite vegetal hasta obtener el nivel de ácido linoleico para aves.

El fabricante ofrece estas garantías del Protei-60-Amo:

Proteína	60.2 %
Digestibilidad	86.1 %
Lisina disponible	1.44%
Fósforo	3.34%

Microbiológico completo:

Cuenta	est	andar	65,000	cor/a
Cuenta	de	coliformes	cero	col/g
Cuenta	đе	enerobacterias	. cero	col/g
Cuenta	de	hongos	180	col/g
Cuenta	de	levaduras	cero	col/g

Aislamiento bacteriológico: Bacillus sp. Aislamiento micológico: Mucor sp. Determinación de salmonella: Negativo.

CUADRO 4

Composición de las dietas experimentales con dos diferentes fuentes de proteína. (Los ingredientes están en kilogramos por tonelada).

INGREDIENTES	DIETA 1	kg./ton.	DIETA 2 kg./ton.
Sorgo 9		545	556
Alfalfa 19		40	40
Canola 36		70	70
Soya 46		90	85
Soya integral 36		110	100
Harina de pescado 60			50
Protei-60-Amo		40	
Fosfato 21.17		11	9
Calcio 38		88	85
Sal		3	2.5
Vit. ponedora		2	2
Lisina		0.5	0.5
Methionina		1.2	0.5
	TOTAL	1000.7	1000.5

ANALISIS CALCULADO EN PORCIENTO

	ŭ	-
Proteina	19.006	19.049
Fósforo total	0.734	0.686
Calcio	3.922	3.826
Grasa	4.150	3.977
Fibra cruda	3.975	3.892
Ceniza	13.57	13.288
Humedad	10.629	10.726
Sal	0.439	0.429

4. MANEJO RUTINARIO.

Para el manejo de las aves se contó con el siguiente personal: 7 obreros (1 obrero por caseta con 18,000 aves aproximadamente y 1 obrero relevista) y 1 encargado de toda el área. Hay personal técnico y personal administrativo.

El programa de actividades realizadas por los obreros fue el siguiente:

8:00 a.m.	Servir el alimento.
9:00 a.m.	Barrer las banquetas.
	Pegar cajas. (Se utilizan cajas, charolas y
	separadores nuevos por cuestión de higiene).
10:00 a.m.	Primera recolección de huevo.
2:30 a.m.	Primer movimiento de alimento.
3:00 p.m.	Segunda recolección de huevo.
-	Se juntan las aves muertas.
3:30 p.m.	Se pesa el huevo.
4:00 p.m.	Segunda movida de alimento.
	Una vez recolectado,
	seleccionado, empacado y pesado el huevo; el
	encargado toma un reporte de producción el
	cual se muestra en el anexo No. 1. El huevo
	se traslada a una bodega de almacenamiento.

5. REGISTRO DE PRODUCCIÓN DIARIA.

El encargado paso reporte diario de producción al personal administrativo, para de ahí fue vaciado en registros de producción (anexo No. 2) y gráficas comparativas (anexo No. 3 y 4).

Mensualmente la producción se paso a un informe detallado a contabilidad.

6. EVALUACIÓN ECONÓMICA DEL PROYECTO.

Con los datos obtenidos de los registros se hicieron evaluaciones económicas para establecer la relación de beneficio en costo y haciéndose así una estimación económica de las perdidas y ganancias con la utilización de las dos fuentes proteicas.

7. EVALUACIÓN ESTADÍSTICA.

Los resultados obtenidos en los diferentes parámetros de producción anteriormente mencionados se les aplicó un análisis de varianza totalmente al azar y la estimación de la significancia se realizó por comparación de medias mediante la prueba de Tukey.

RESULTADOS

Utilizando los registros de cada parámetro productivo, estos fueron sometidos a un análisis de varianza totalmente al azar y la diferencia de medias se determino con la "Prueba t student" para determinar las diferencias significativas de los tratamientos.

Una vez transcurrido 27 semanas de producción dando dos fuentes de proteína diferentes se analizaron todos los parámetros productivos de ambas pruebas. De la caseta No. 1 en la que se dio el análogo de proteína en la dieta se obtuvo los resultados que aparecen en el cuadro No. 5; a las casetas del 2 al 6 a las que se dio harina de pescado en su dieta alimenticia presentan los resultados obtenidos en el cuadro No. 6.

En un efecto comparativo entre las dos pruebas se observa la diferencia significativa entre los parámetros productivos que presentan en el cuadro $No.\,7$

CUADRO 5

CONCEPTO AVES = 17,714	Nayo	Junio	Julio	Agosto	Septiembre	Octubre	
# DE HUEVOS	464,257	487,389	496,366	481,172	424,600	451,807	
% PRODUCCION AVE/DIA	85.2	93.4	92.9	90.5	83.4		
% PRODUCCION AVE/CONFINADA	84.5	91.4	90.3	87.6	79.8	82.2	
PRODUCCION KILOS	23,909	27,050	28,193	28,437	254,000	27,468	
PESO DEL HUEVO GRS.	51.5	55.5	56.8	59.1	59.9	60.8	
# HUEVOS AVE/CONFINADA	26.2	27.51	28.02	27,16	23.96	25.5	
# HUEVOS AVE/CONFINADA ACU.	26.2	53.71	81.73	108.89	132.85	158.35	
# MORTANDAD Y ELIMINADAS	264	151	125	112	185	89	
% MORTANDAD Y ELIMINADAS	1.49	0.86	0.72	0.65	1.08	0.52	
# MORTANDAD Y ELIMINADAS ACU.	264	415	540	652	837	926	
% MORTANDAD Y ELIMINADAS ACU.	1.49	2.35	3.07	3.72	4.08	5.32	
SALDO DE LAS AVES	17,450	17,299	17,174	17,062	16,877	16,788	
CONSUMO ALIMENTO EN KGS.	53,295	54,600	57,590	60,760	55,641	56,560	
CONSUNO ALIMENTO ACU.	53,295	108,195	165,785	226,245	282,186	338,746	
CONSUMO AVE/DIA	98.3	104.7	107.7	114.5	109.3	115.8	
CONSUMO AVE/MES	3,047	3,141	3,338.7	3,549.5	3,279	3,589.8	
CONVERSION ALIMENTICIA	2,241	. 2,018	2.042	2.136	2.19	2.059	
CONVERSION ACUMULADA	2,241	2,123	2.094	2.105	2.121	2.111	
PRODUCCION ACUMULADA	464,257	951,646	1,448,012 1	,929,184	2,353,784	2,805,591	
KILOS ACUNULADOS	23,909	50,959	79,152	107,589	132,989	160,457	
KILOS AVE/MES	1.359	1.556	1.635	1.66111	1.496	1.631	
KILOS AVE/CONFINADA	1,349	1.527	1.591	1.605	1.433	1.55	
KILOS AVE/CONFINADA ACU.	1,349	2,876	4.467	6.072	7.505	9.055	
# HUEVO ROTO Y BLANDO	3,712	5,083	6734	9,835	11,729	9,049	
% HUEVO ROTO Y BLANDO	0.79	1.042	1.36	2.043	2.76	2	
# HUEVO ROTO Y BLANDO ACU.	3,712	8,740	15,474	25,309	37,038	46,087	
% HUEVO ROTO Y BLANDO ACU.	0.79	0.918	1.068	1.311	1.573	1.642	
KILOS HUEVO X TON. DE ALIMENTO	446.22	495.54	489.71	468.16	456.62	485.67	
HUEVO MENSUAL/AVE	26.4	28.05	28.798	28.112	25.02	26.842	
MASA	43.878	51.837	52.767	53.485	49.956	52.592	
EFICIENCIA	2.24	2.019	2.041	2.14	2.187	2.2	
PESO DEL AVE	1.567	1.62	1.66	1.68	1.7	1.7	

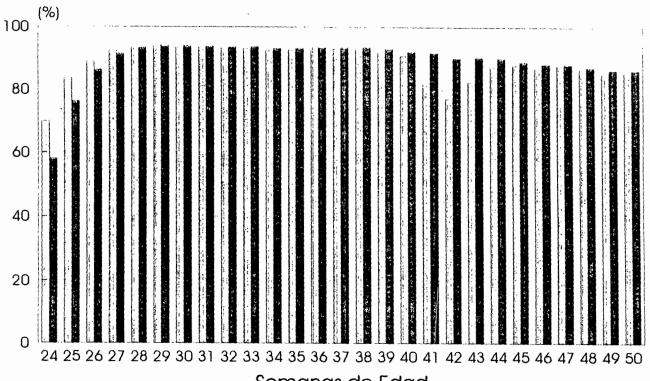
CUADRO 6

CONCEPTO AVES = 17,714	Mayo	Junio	Julio	Agosto	Septiembre	Octubre
# DE HUEVOS	2,176,407	2,423,328	2,469,128	2,436,200	2,265,922	2,261,587
% PRODUCCION AVE/DIA	80.7	93.7	93.4	92.8	89.8	87.3
<pre>% PRODUCCION AVE/CONFINADA</pre>	80.1	92.18	90.8	89.67	86.1	83.2
PRODUCCION KILOS	110,343	133,283	140,987	144,466	135,728	138,443
PESO DEL HUEVO GRS.	50.7	55	57.1	59.3	59.9	60.9
# HUEVOS AVE/CONFINADA	24.83	27.65	28.17	27.79	25.85	25.8
# HUEVOS AVE/CONFINADA ACU.	24.83	52.48	80.65	108.44	134.29	160.09
# MORTANDAD Y ELIMINADAS	1,230	848	683	574	547	501
§ MORTANDAD Y ELIMINADAS	1.4	0.98	0.79	0.65	0.64	0.59
# MORTANDAD Y ELIMINADAS ACU.	1,230	2,078	2,761	3,335	3,882	4,383
% MORTANDAD Y ELIMINADAS ACU.	1.4	2.38	3.17	3.82	4.46	
SALDO DE LAS AVES	86,406	85,558	84,875	84,301	83,754	83,253
CONSUMO ALIHENTO EN KGS.	249,875	251,225	273,085	289,885	275,524	302,790
CONSUMO ALIMENTO ACU.	249,875	501,100	774,185	1,064,070	1,339,594	
CONSUMO AVE/DIA	92.6	102.3	103.3	110.5	109.3	117
CONSUMO AVE/MES	2,870.6	3,069	3,202.3	342,505.0	3,279.0	3,627.0
CONVERSION ALIMENTICIA	2.264	1.884	1.936	2.006	2.029	2.187
CONVERSION ACUMULADA	2.264	2.056	2.012	2.011	2.015	2.044
PRODUCCION ACUMULADA	2,176,407	4,599,732	7,068,860	9,505,060	11,770,982	14,032,569
KILOS ACUMULADOS	110,343	243,626	384,613	529,073	664,801	803,244
KILOS AVE/MES	1.268	1.55	1.654	1.707	1.615	1.657
KILOS AVE/CONFINADA	1.259	1.520	1.608	1.648	1.548	1.579
KILOS AVE/CONFINADA ACU.	1.259	2.779	4.387	6.035	7.583	9.262
# HUEVO ROTO Y BLANDO	15,446	18,403	21,625	24,052	28,991	34,174
% HUEVO ROTO Y BLANDO	0.7	0.75	0.87	0.98	1.27	1.51
∦ HUEVO ROTO Y BLANDO ACU.	15,446	33,849	55,474	79,526	108,517	142,691
HUEVO ROTO Y BLANDO ACU.	0.709	0.735	0.784	0.836	0.921	1.016
KILOS BUEVO X TON. DE ALIMENTO	441.6	530.7	516.52	498.5	492.85	457.24
HUEVO HENSUAL/AVE	25.01	28.18	28.9777	28.8	26.966	27.083
MASA	40.914	51.535		55.03	53.79	53.165
EFICIENCIA	2.263	1.888	1.936	2.007	2.031	2.2
PESO DEL AVE	1.567	1.62	1.68	1.7	1.71	1.724

CUADRO 7

Mes	₽ Caseta	% DE PRODUCCION	<pre> DE MORTALIDAD </pre>	CONSUMO AVE/DIA	HUEVO AVE/MES	KG. HUEVO AVE/MES	8 roto y blando	MASA	CONVERSION	COSTO TON. AUMENTO
Mayo	1	85.2	1.49	98.3	26.405	1.359	0.790	43.878	2.241	487.30
	2 a la 6	80.7	1.4	92.6	25.010	1.268	0.700	40.914	2.264	541.29
Junio	1	93.4	0.86	104.7	28.052	1.556	1.042	51.837	2.018	499.44
	2 a la 6	93.7	0.98	97.3	28.184	1.550	0.759	51.530	1.884	548.79
Julio	1	92.9	0.72	107.7	28.798	1.635	1.360	52.767	2.042	527.55
	2 a la 6	93.4	0.79	103.3	28.974	1.654	0.870	53.331	1.936	583.14
Agosto	1	90.5	0.65	114.5	28.112	1.661	2.040	53.480	2.136	568.20
,	2 a la 6	92.8	0.67	110.5	28.800	1.707	0.990	55.030	2.006	584.89
Septiembre	1	83.4	1.08	109.3	25.022	1.496	2.760	49.950	2.190	600.79
	2 a la 6	89.8	0.64	109.3	26.966	1.615	1.270	53.790	2.029	600.79
Octubre	1	86.5	0.52	115.8	26.842	1.631	2.000	52.592	2.059	549.00
	2 a la 6	87.3	0.59	117	27.083	1.657	1.510	53.16 5	2.187	549.00

PARAMETROS PRODUCTIVOS:

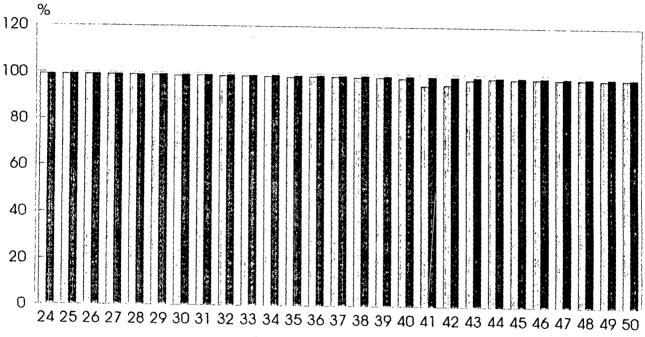

Los resultados del efecto de la harina de pescado contra los del análogo de proteína presentan una notable diferencia productiva de la semana 40 a la 44 como se observa en los resultados siquientes.

- A) INDICE DE PRODUCCION.- Se observa la baja producción de huevo (gráfica 1) que empieza en la semana 40 con el análogo de proteína dándonos un resultado en la prueba de t sudent una diferencia significativa de 0.005 (anexo 5).
- B) HUEVO NORMAL.- Se vio afectado entre la semana 40 a la 43 (gráfica 3) dándonos una diferencia significativa de 0.005 (anexo 6).
- C) HUEVO ROTO.- En este parámetro nos presento en las 27 semanas un incremento en el porcentaje dándonos un aumento considerable en la semana 41 a la 43 (gráfica 3) con una diferencia significativa de 0.005 (anexo 7).
- D) HUEVO BLANDO.- Presento el incremento en el porcentaje de la semana 40 a la 43 (gráfica 4) dando una diferencia significativa de 0.005 de la 41 a la 43 semana (anexo 8).
- E) PESO PROMEDIO DEL HUEVO.- No tubo una gran varianza (gráfica 5) solamente en la diferencia significativa de la semana 40 y 41 que fue de 0.005 (anexo 10).
- F) MORTALIDAD.- El incremento fue de la semana 41 a la 44 (gráfica 6) presentando una diferencia significativa de 0.05 en la 42, 0.1 en la 43 y 0.05 en la semana 44 (anexo 10).

- G) CONSUMO DE ALIMENTO.- El grupo con la dieta del análogo de proteína por lo regular estuvo por encima el consumo que la dieta con harina de pescado con excepción de la semana 41 a la 43 (gráfica 7) y una diferencia significativa de 0.01 en la semana 43 (anexo 11).
- F) CONVERSIÓN ALIMENTICIA.- Por lo regular estuvo mas alta en el grupo del análogo con mas realce en la semana 40 y 42 (gráfica 8) dando una diferencia significativa de 0.005 en la 40 y 0.05 en la semana 42 (anexo 12).

Una vez concluido la negativa producción en todos los parámetros se cambio la dieta del análogo de proteína dando la misma dieta con harina de pescado que se daba en las demás casetas, esto se realizo en la semana 43 y normalizanose en la semana 44. En la semana 43 de las gallinas muertas se apartaron los huesos largos como son fémur y tibia, se pusieron a secar, posteriormente haciéndolos harina de hueso para mandarla analizar al laboratorio, lo cual nos indica el grado de toxicidad de las aves por el uso de subproductos de origen animal.

INDICE DE PRODUCCION

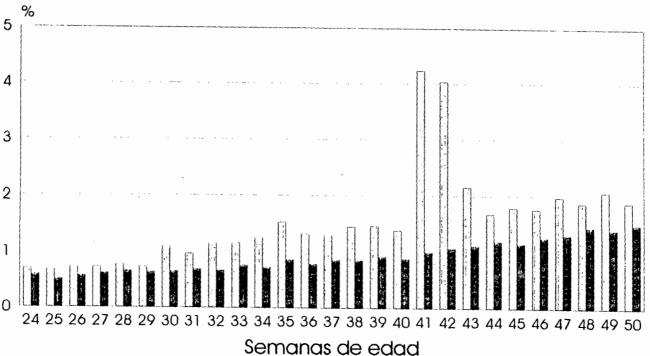


Semanas de Edad

■Gpo. con analogo
■Gpo. sin analogo

HUEVO NORMAL

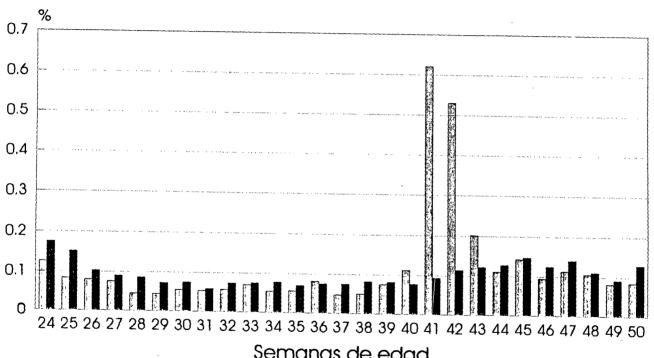
(%)



Semanas de edad

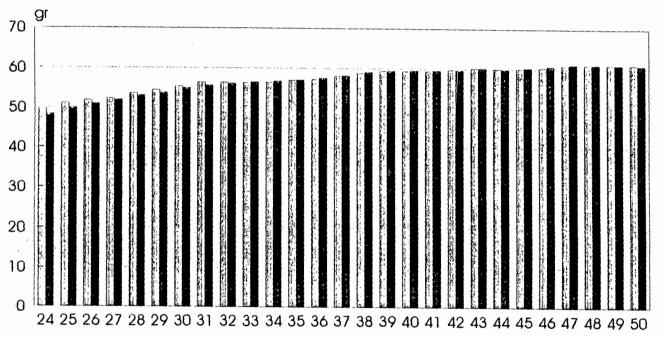
□Gpo, con analogo ■Gpo, sin analogo

43


HUEVO ROTO

□Gpo, con analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo, sin analogo
□Gpo,

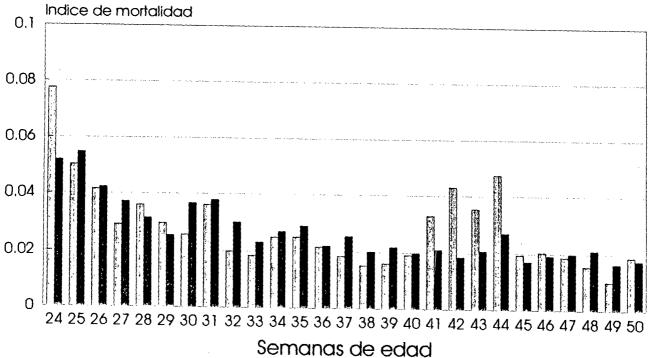
25


HUEVO BLANDO

Semanas de edad

□Gpo. con analogo ■Gpo. sin analogo

PESO PROMEDIO DEL HUEVO (gr)

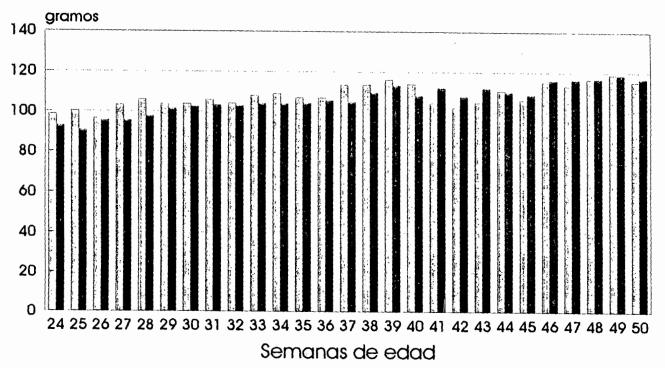


Semanas de edad

■Gpo. con analogo
■Gpo. sin analogo

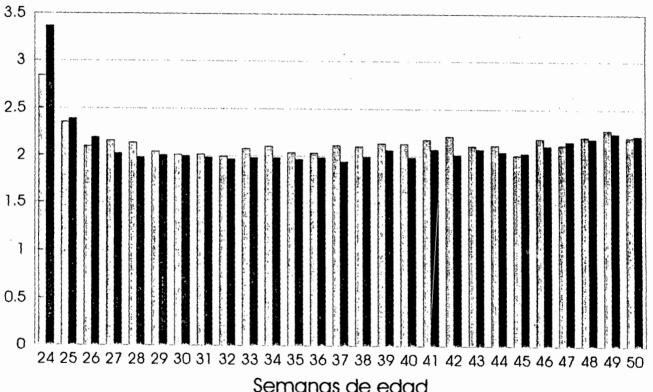
GRAFICA 5

MORTALIDAD



□Gpo. con analogo ■Gpo. sin analogo

GRAFICA 6


CONSUMO DE ALIMENTO

(gr / AVE)

■Gpo. con analogo ■Gpo. sin analogo

CONVERSION ALIMENTICIA

Semanas de edad

□Gpo. con analogo Gpo. sin analogo

DISCUSION

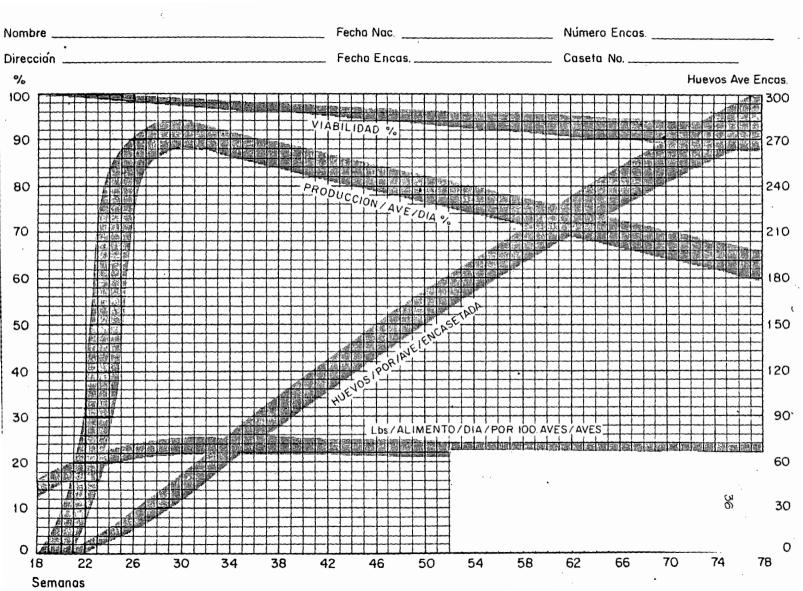
Al valorar una dieta, conviene tener en cuenta que la composición de los ingredientes individuales es variable y que algunos nutrimentos son comparativamente inestables y de algunos no se dispone tal como se producen de modo natural en los campos. Una dieta que parezca contener justo lo suficiente de uno o mas nutrimentos puede, en verdad, ser deficiente hasta cierto punto. Algún compuesto químico, toxina, microorganismo, etc., puede destruir o hacer no disponible para el ave un nutrimento particular que se halla presente en la dieta a niveles adecuados.

Los resultados obtenidos durante esta comparación de proteína, esperábamos tener un menor costo de producción al usar el análogo de proteína, en comparación con la harina de pescado ya que es una fuente de proteína muy cara, pero en dicho trabajo se comprobó que la calidad nutricional de la Harina de pescado dio mejores resultados en la producción de huevo sin afectar al ave.

Se comprobó que el uso de subproductos de origen animal no tienen la calidad proteica necesaria para la dieta en las aves de postura, por lo que no se llego a obtener los parámetros deseados. Observado este punto se mando analizar los huesos largos como son fémur y tibia secándolos bien y haciéndolos harina de hueso para mandarlo al laboratorio, obteniendo estos resultados: 23.06 ppm de plomo, 358.10 ppm de fierro, 0.516% de Fluor, 3.19 ppm de cromo, 7.61% de fósforo y 17.02% de calcio; lo cual nos indica el grado de toxicidad que presentaban las aves a las 40 semanas de vida. (Anexo 13)

CONCLUSIONES

- 1.- La fuente de proteína de la harina de pescado es de mejor calidad nutricional para las aves de postura.
- 2.- Las aves que se les dio la dieta con harina de pescado llegaron a los parámetros productivos esperados y sin presentar ningún desequilibrio nutricional.
- 3.- En cuestión económica la dieta con harina de pescado fue mas costeable por la estabilidad productiva que presento.
- 4.- No usar subproductos de origen animal por el alto riesgo al cual fueron sometidos ya sean productos químicos o cualquier otro tipo de método utilizado en el proceso de este análogo proteico, ya que puede presentar alto riesgo de toxicidad en las aves y muy baja productividad.


ANEXOS

A V Î Č O L A C A L D E R O N REPORTE DIARIO DE PRODUCCION

CALAS	CHAROLAS	BOBRANTE	ROTO		CONSUMO DE	MOVIMENTO DE AVES			KG.	TEMPERATURA	
			ROTO	PLANDO		MUERT.	ELIM,	EXISTENCIA	HUEVO	MAX.	MIN.
1											
					<u> </u>						
											!
		•									
						,					
		L				L				!	
IONES:			·				·				
	IONES:	IONES:		IONES:	IONES:	IONES:	IONES:	IONES:	IONES:		IONES:

REGISTRO DE PRODUCCION Granja _____Mes__ No. Aves al Iniciar el mes Caseta No.___ PRODUCCION MOVIMIENTO AVES CONSUMO ALIMENTO KGS. CONSUMO ALIMENTO GRS. TEMPERATUR. KG. DE HUEVO DE. 685. 8 ECC 61005 FDAD EN SEMANAS ELIMIN. VENTA MUEATAS PESO D ROTO સ્ક્રી≱સ્ટ્રેં TOTAL KORMAL MAX. Ĭ ÇÂ 1 2 3 S в 7 8 9 10 11 12 13 14 15 17 ıs 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31 TOTAL CONVERSION ______ Grs. Huevo x Ava día_____ Kgs. huevo mes _____ Eficiencia_

OBSERVACIONES: ___

CUADRO 5

Junio

Nayo

Julio Agosto Septiembre Octubre

CONCEPTO AVES ≈
E DE MYDING
DE HUEVOS .
% PRODUCCION AVE/DIA
% PRODUCCION AVE/CONFINADA
PRODUCCION KILOS
PESO DEL HUEVO GRS.
HUEVOS AVE/CONFINADA
HUEVOS AVE/CONFINADA ACU.
MORTANDAD Y ELIMINADAS
% MORTANDAD Y ELIMINADAS
MORTANDAD Y ELIMINADAS ACU.
% MORTANDAD Y ELIMINADAS ACU.
SALDO DE LAS AVES
CONSUMO ALIMENTO EN KGS.
CONSUMO ALIMENTO ACU.
CONSUMO AVE/DIA
CONSUMO AVE/MES
CONVERSION ALIMENTICIA
CONVERSION ACUMULADA
PRODUCCION ACUMULADA
KILOS ACUMULADOS
KILOS AVE/MES
KILOS AVE/CONFINADA
KILOS AVE/CONFINADA ACU.
HUEVO ROTO Y BLANDO
& EUEVO ROTO Y BLANDO
HUEVO ROTO Y BLANDO ACU.
% HUEVO ROTO Y BLANDO ACU.
KILOS HUEVO X TON, DE ALIMENTO

HUEVO MENSUAL/AVE

MASA EFICIENCIA PESO DEL AVE

4.082423

.541867

2.397644

 $\sigma 2 = .600564$

σ1 ≔

 $\sigma 2 =$

c1 ≈

D.S.

```
*** AREA DE INFORMATICA ***
```

S	•	_	~	•	-	1	0	

*** Prueba tietudent ***

Base trabalada:

tratemientos: (1

Muestra 1: .9557256 MEDIA = 90.70858 σ1 ≈ Muestra 2: .3365728 MEDIA = 92.19714 $\sigma 2 \approx$

VALOR DE t = 3.884855

Grados de Libertad = 8

0.5. $\alpha = 0.1, 0.05, 0.01, 0.005$ Diferencia Significativa, nivel(es)

*** AREA DE INFORMATICA ***

Semana 41 *** Prueba tistudent ***

Base trabalada: tratamientos: O O

Muestra 1: MEDIA = 81.82 MEDIA = 91.78715 Muestra 2:

Grados de Libertad = 6 VALOR DE t = 6.395686

Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$ 0.3.

D.S.

*** AREA DE INFORMATICA ***

Semana 42 *** Prueba tistudent ***

MEDIA = 77.23286

tratamientos: O

Muestra 1:

Base trabajada: O

MEDIA = 90.03715 Muestra 2: Grados de Libertad = 7

VALOR DE t = 13.70586D.S.

 $\alpha = 0.1, 0.05, 0.01, 0.005$ Diferencia Significativa, nivel(es)

*** AREA DE INFORMATICA ***

Temana 43 *** Prueba t'student ***

Base trabalada: tralamientos:----

#1 = MEDIA = 2.854775 Muestra l: .2797395 Muestra 2: MEDIA = 90.22999 g2 =

Grados de Libertad = 6 VALOR DE t ≈ 7.124849

Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$

g1 = .8327864

 $\sigma 2 = .1350154$

*** AREA DE INFORMATICA *** Semana 40

*** Frueba tistudent ***

Base trabajada: tratamientos: 0

MEDIA = . 98.15715 MEDIA = 99.02001 .4018188 Muestra 1: **σ1** ≈ Muestra 2: $\sigma 2 = 3.608439E-02$

> Grados de Libertad = 6 VALOR DE t = 5.659639 D.S.

D.S. Diferencia Significative, nivel(es) $\sigma = 0.1, 0.05, 0.01, 0.005$

*** AREA DE INFORMATICA ***

*** Frueta t student ***

Semana 41

Base trabajada:

tratamientos: 0

Muestra 1: MEDIA = 95.13714 Muestra 2: MEDIA = 98.87714

Grados de Libertad = 6 VALOR DE t = 11.46379D.S.

D.S. Diferencia Significativa, nivel(es) $\phi = 0.1$, 0.05, 0.01, 0.005

*** AREA DE INFORMATICA ***

Semana 42 *** Proeba tistudent ***

Base trabajada:

tratamientos: 0

Muestra 1: MEDIA = 95,42428 $\sigma 1 = .6525192$ MEDIA = ' 98.80428 Muestra 2: €2 ≈ .0425

Grados de Libertad = 6 VALOR DE t = 13.64238D.S.

D.S. Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$

*** AREA DE INFORMATICA ***

*** Proeba tistodent *** Semana 43

Base trabajada:

tratamientos: 0

MEDIA = . 97.63656 Muestra 1: " MEDIA = 98.71857 Musstra I:

Grados de Libertad = 6

gi: = 8.068715E-02

el = .5555421

i.

D.S. Diferencia Significativa, nivol(es) v = 0.1, 0.07, 0.04, 0.000

VALOR DE t = 5.090006

```
*** AREA DE INFORMATICA **:
```

Semana 40 ·

114 Orughs tistudent ***

Basa trabajada: tratamientos: O

: 1

Milastra 1: MEDIA = 1.387143 Musetra 7:

. 4575340 at 1 at

MEDIA = .8952858

 $\sigma 2 = -4.5AB5B4E-02$

Brados de Libertad = 4 VALOR DE t = 1.974342

Diferencia Significativa, njvel(es) $\alpha = 0.1, 0.05$

*** AREA DE INCORMATICA **:

saw Dougha t'atudent *** Semana 41

Rame transpoder tratamientos: O

7717794 ,r1 =

Muserra 1: MFDIA = 4.034 Musetra 7: MEDIA = 1.014571

σ7 ≈ . 1117878

a,= 0.1, 0.05, 0.01, 0.005

Grados de Libertad s. /-VALUE DE t = 10,92945

D. S.

5 S. Diferencia Sion-Hicativa, nivel(es)

*** AREA DE IMEDRMATICA **:

Semana 42 saw Chupha t'atudant www

Rasa trahajada.

- Muastra 1: Muestra 2:

tratamientos: ú

MEDIA = 4.034714 MEDJA = 1.081429

at = _A090304. 67 = 5.211435E-02

Grados de Libertad = A

WALDR DE t = 12,79161

Diferencia Significativa, nivel(es) 0.8. $\alpha = 0.1, 0.05, 0.01, 0.005$

n.s.

*** AREA DE INFORMATICA SE.

Semana 43 114 Projeha tistudent ***

Bass frakcisde...

tratamientos: 0

MENTA = 4900177

Musetna 7: MEDIA = 1,125714 ಚ್? ജ 0805088

> Grados de Libertad = 1/2 VALOR DE E = 5.412097 D. S.

5.5. Diferencia Significativa, nivel(eq) $\kappa = 0.1, 0.05, 0.01, 0.005$

```
144 AREA DE INFORMATICA 444
```

Semana 40

*** Prijaha t'atiidant ***

Cincip trahataria tratamientos: 0

Musetra 1. MEDIA = 1121425

E1 = A ATRAG1E-07

Milpeton 2. MEDIA = 7 7147866-02 47 = 0203095

Brados de Libertad = 5 VALOR DE t = 1.832 D. S.

5 4. Diferencia Significativa, nivel(es) & = 0.1

* *** AREA DE INCHEMATICA **:

Semana 41

*** Prophs tistodent ***

Raed trahafadatratamientos: O

A211479 1438941 MEDIA = r1 == Musatra 1.

MEDIA = 9 31429AF-02 Minaetra 7.

 $\sigma 2 \approx -1.818814F-02$

Grados de libertad = 1. UAL OR DE + = 9 AS1594 n s

Diferencia Significativa, nivel(act D = N = 0.1, 0.05, 0.01, 0.005

*** AREA DE INFORMATICA **:

Projets t'student

Semana 42

Rass trabaiada. tratemientos. O

1850701 Mugatra 1. METITA = 5314295 m1 = $\sigma 2 = -8.118211E-03$

Musetps 2. MEDIA ≈ . 1137143

> Brades de Libertad = A WALDR DE t = 5.965818 D.S.

Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$

*** AREA DE INFORMATICA **:

Semana 43 144 Priicha t'stiident 444

Flace trahajada:

fratamientre: il

2021429 S 758884F-OT Musetra 1. MEDIA = $\pi 7 = 1.291924F-02$

Mosetra 7. MEDIA = 10008577

> Grades de Libertad = /. MALOR DE + = 2,137686 n.s.

Diferencja Significativa, nivel(es) x = 0.1. 0.05

```
*** AREA DE INFORMATICA ***
```

Semana 40 *** Frueba t'student ***

Base trabajada:

tratamientos: O

Muestra 1: = AIGDIN 57.4 Muestra 2: MEDIA = 57.62858

.0180422 $\sigma 2 = 6.987713E-02$

Grados de Libertad = 7

Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$

VALOR DE t ≈ 0.379759 D.G.

*** Prueba tistudent *** Semana 41

Base trabalada: tratamientos: 0

theatra Os

0

MEDIA = Muestra 1: 57,42057

5.103104E-02 # 1 =

g = 0.1. 0.05. 0.01. 0.005

MEDIA = 57,61429

 $\sigma 2 = .1052032$

Grados de Liberted = 10 VALOR DE t = 4.202331D.G.

*** AREA DE INFORMATICA ***

Diferencia Significativa, nivel(es)

*** AREA DE INFORMATICA *** '

*** Prueba t'student * ***

Semana 42

Base trabalada: tratamientos: 0

1)

MEDIA = Muestra 1: Muestra 2: MEDIA = 59.74286

.6000210 ot = .2754022 σ2 ∞

Grados de Libertad = 9

VALOR DE t = .2289878

NS = No hubo diferencia significativa (α≈0.05 , 1.833)

*** AREA DE INFORMATICA ***

*** Prueba t'student *** Semana 43

Base trabajada:

Musstra 2:

tratamientos: 0

MEDIA = 60.15715 Mumatra 1:

.4157542 $\sigma 1 \approx$ MEDIA ≈ 60.21429 **σ2** ≃ .5238455

> Grados de Libertad = 13 VALUE DE t = .2260675142

MS = Mo hubo diferencia significativa $(\alpha=0.05 , 1.771)$

```
*** AREA DE INFORMATICA ***
                                                                 Mortalidad 43
                                                      Anexo 10
                      *** Prueba tistudent ***
       Semana 40
Base trabajada:
tratamientos: 0
Muestra 1:
                                                        c1 = 8.254871E-03
               MEDIA = 1.914286E-02
               MEDIA = 1.971429E-02
                                                        \sigma 2 = 5.122308E-03
Muestra 2:
                      Grados de Libertad = 11
                     VALUE DE t = .1956216
                                                NS
         MS = No hubo diterenciá significativa
              (α≈0.05 . 1.796)
                      *** AREA DE INFORMATICA ***
       Semana 41
                      *** Prueba tistudent ***
Base trabajada:
tratamientos: 0
Muestra 1:
               MED1A = 3.285714E-02
                                                        \sigma 1 =
                                                              .0216212
Muestra 2:
               MEDIA = .021
                                                        \sigma 2 = 5.773501E-03
                     Brados de Libertad = 7
                     VALOR DE t = 1.401822
                                                NS
         NS = No hubo diferencia significativa
              (a=0.05 . 1.895)
                     *** AREA DE INFORMATICA ***
      Semana 42
                     *** Frusba tistudent ***
Base trabajada:
tratamientos: 0
                              1)
               MED1A = .040
Muestra 1:
                                                              3.021037E-02
                                                        c1 =
               MEDIA = 1.857143E-02
Muestra 2:
                                                        \sigma 2 = 3.309446E-03
                     Grados de Libertad = 6
                     VALOR DE t = 2.126673
                                                D.S.
         D.S. Diferencia Significativa, nivel(es)
                                                      α =
                                                            0.1. 0.05
                     *** AREA DE INFORMATICA ***
      Semana 43
                     *** Prueba tistudent ***
Base trabajada:
tratamientos: 0
                             O
               MEDIA = 3.542857E-02
Mussbra 1:
                                                       r1 ==
                                                              2.015654E-02
               MEDIA = 2.071429E-02
Musetre 2:
                                                       #2 = 2.927687E-03
                     Grados de Libertad = \alpha
VALOR DE t = 1.911344
                                                D.S.
```

p.S. Diferencia Significativa, nivel(es) $\alpha = 0.1$

```
*** AREA DE INFORMATICA ***
```

æ	emana	40
	emana	44 ()

*** Prueba t'student ***

Dave trabalada:

tratamientos: 0

Muestra 1:

Muestra 2:

MEDIA = 114.0429

MEDIA = 108.2

e1 = 4.397265 $\sigma 2 = 3.246192$

Grados de Libertad = 13

WALDR DE t = 2,828321

D.S.

2.S. Diferencia Significativa. nivel(es) $\alpha = 0.1, 0.05, 0.01$

*** AREA DE INFORMATICA ***

Semana 41 244 Proebs t'student ***

Base trabajada:

Nuestra 1:

Muestra 2:

tratemientos: 0

MEDIA = 104.5857 MEDIA ≈ 112,1429 $\sigma 1 = 10.93167$ $\sigma 2 = 2.982152$

Grados de Libertad = 7

WALDR DE t = 1.764548 D.S.

0.3. Diferencia Significativa, nivel(es) $\alpha = 0.1$

*** AREA DE INFORMATICA ***

*** Prueba tistudent ***

Semana 42

Rase trabalada: tratamientos: 0

Muestra 1: MEDIA = 102,2714 Musstra 2: MEDIA = 107,7714

7, 989647 $\sigma I =$ $\sigma 2 = 1.525819$

Grados de Libertad = 6 VALOR DE t = 1.439974

MS = No hubo diferencia significativa (α≈0.05 , 1.943)

*** AREA DE INFORMATICA ***

Semana 43

*** Prueba t'student ***

Base trabajada: tratamientos: 0

MEDIA = 104.6429 c1 = 5.747169 Huestra 1: MEDIA = 111.8857 $\sigma 2 = 4.139023$ Muestra 2:

> Grados de Libertad = 13 WALOR DE t = 2.705665 D.S.

0.S. Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01$

D.S. Diferencia Significativa, nivel(es) $\alpha = 0.1, 0.05, 0.01, 0.005$

*** AREA DE INFORMATICA *** Semana 41 *** Prueba tistudent ***

trabalada:

amientos: O

MEDIA = 2.176857 01 = .2652274 $\sigma 2 = 5.357464E-02$ MEDIA = 2.072429

tra 1:

tra 2: Grados de Libertad = 7 VALOR DE t.= 1.021094 NS ' MS = No.hubo diferencia significativa

 $(\alpha = 0.05 , 1.875)$

*** AREA DE INFORMATICA ***

*** Frueba t'student *** Semana 42

trabajadat amientos: O

.2280977 ma 1: MEDIA = 2.214 $\sigma 1 =$ σ2 ≈ 3.330828E~02

ra 2: MEDIA = 2.015429Grados de Libertad = 6 VALOR DE t = 2.279094D.S.

p.S. Diferencia Significativa. nivel(es) $\alpha = 0.1.0.05$

REPORTE DE LABORATORIO DE CONTROL DE CALIDAD

GRANIA ATTICHA OTTOLERIA.

GRANIA ATTICHA OTTOLERIA.

MATERIA AND ZIOT RNA. DE BUESO DE CALLINA, SORGO DE CERVECERIA.

FECHA RECEFCICII 23 SEPTIEMPRE 1939

PROVEEDOR

CALCIO (I) MICOTOKINAS (ppb) PLOMO(ppm) FIERRO (ppm)

HNA. DE HUESO DE 17.02 23.06 358.10 GALLINA

SORGO DE CERVECERIA NEGATIVO*

FLUOR-(2) CROMO (ppm) FOSFORO (2)

UNA. DE HUESO DE 0.516 3./9 7.61 GALLINA

NEGATIONS - LIEVO AS DE MOVEMO PI, R. C. STERIGNATOCISTINA, OCRATOXINA, ZEARALENONA.

140.8. MARISA AUSTA VALDENEBRO.

ATENTAMENTE

BIBLIOGRAFIA

- 1.- Abastecedores Pecuarios Lozano, S.A. de C.V. "Evaluación de la harina de Subproductos animales como suplemento proteico." 1989.
- 2.- Asociación Americana de la Soya. "Ingredientes alimenticios en la producción de aves de corral" Editorial año dos mil, S.A. Síntesis Avícola. Vol.5 No.1 enero pág. 40-46. 1987.
- 3.- Avila G. E. "Fuentes de proteínas para la alimentación y aves y cerdos". Editorial Aneca Aneca Avirama. Año 6. Vol.VI. No.71. Marzo. pág. 30-36. 1988.
- 4.- Balconi R. Ivan. "La harina de pescado en alimentos balanceados I". Editoriai Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 1. No.5 Junio. Pág: 8-11. 1988.
- 5.- Balconi R. Ivan. "La harina de pescado en alimentos balanceados II". Editorial Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 1. No.6. Julio. Pág. 9-14. 1988.
- 6.- Balconi R. Ivan. "Compras, formulación y producción, el uso óptimo de ingredientes". Editorial Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 1. No. 10. Noviembre. Pág: 3-5. 1988.
- 7.- Balconi R. Ivan "Fabricación de alimentos. Desfase Tecnológico." Editorial Mida Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 2. NO. 17. Junio. Pág. 3-8. 1989.
- 8.- Ballam C. G. "La integración de la nutrición y del manejo en el tamaño del huevo". Editorial Watt. Industria Avícola. Vol. 32. No. 4. Abril. Pág: 10-16. 1985.
- 9.- Bell Donall. "Alimentación de la parvada de ponedora". Editorial Watt. Industria Avícola. Vol. 28. No. 1. Enero. Pág: 44-52. 1981.
- 10.- Buenrostro P. J. "Aspectos de manejos relacionados con la alimentación en granjas de postura comercial". Editorial Aneca Avirama. Año 6. Vol.VI. NO. 58. Enero. Pág: 13-16. 1988.

- 11.-Calabota I. D. "Biodisponibilidad de nutrientes en harina de pescado I". Editorial Midia relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 2. No.14. Marzo. Pág: 10-12. 1989.
- 12.- Chpaves R. "Calidad proteica para una óptima alimentación de la gallina ponedora": Editorial Watt. Industria Avícola. Vol.29. No. 4. Abri I. I. Pág. 32-38. 1982.
- 13.- González I.J. "Situación de la avicultura nacional". Editorial Año Dos Mil. Síntesis Avícola. Vol. 5. No. 9. Septiembre. Pág: 7-12. 1987.
- 14.- Harms. H. R. "Alimentación durante el ciclo vital de ponedoras comerciales I". Editorial Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 2. No. 15. Abril. Pág: 21-22. 1989.
- 15.- Harms H. R. "Alimentación durante el ciclo vital II", Editorial Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 2. No. 18. Julio. Pág. 26-29. 1989.
- 16.- Heinz J. y Gerhard F. "Nutrición de aves". Editorial acribia. España 1978. Primera Edición. Pág: 3-5.
- 17.- Houven P.V. "Alimentación controlada de ponedoras": Editorial Watt. Industria Avícola. Vol. 30. No. 1. Enero. Pág: 56-58. 1983.
- 18.- Instituto Tecnológico y de Estudios Superiores de Monterrey. "Evaluación de subproductos de origen animal" 1984.
- 19.- Kalmbach P. y Lafshaw D. "Programa de alimentación de aminoácidos. Editorial Watt. Industria Avícola. Vol. 28. No. 9. Septiembre. Pág: 72-76. 1981.
- 20.- Milton L. Scott. Malden C. Nesheim y Robert J. Young. "Alimentación de las aves": Editorial GEA. Barcelona 1973. Primera Edición. Pág: 473-496.
- 21.- Martínez A. L. "La Industria de alimentos balanceados en México II". Editorial Midia Relaciones S.A. Tecnología Avipecuaria en Latinoamerica. Año 2. No. 13. Febrero. Pág: 4-6. 1989.

- 22.- Nutrient. Requierements of Poultry. "Deficiencias nutritivas en aves". Editorial Watt. Industria Avícola. Vol. 29. No. 99. Septiembre. Pág. 38-43. 1982.
- 23.- Potter M.L. "Interpretación y evaluación de una reciente investigación en nutrición avícola". Editorial Watt, Industria Avícola. Vol. 31. No. 12. Diciembre. Pág: 12-16. 1984.
- 24.- Rojas R.E. Avila G.E. y Aguilera A. A. "Calidad de la proteína y disponibilidad de la lisina de cuatro harinas de pescado mexicanas". Editorial Aneca Avirama. Año 6. Vol. VI. No.65. Octubre. Pág. 22-23. 1988.
- 25.- Shimada S.A. "Fundamentos de nutrición animal comparativa". Editorial Sistema de Educación Continua en Producción Animal en México. A.C. México, 1987. Tercera Edición. Pág: 247-252, 310-313.
- 26.- Smetsinger. C.D. "Alimentando a las gallinas al comienzo de la postura". Editorial Watt. Industria Avícola. Vol. 32. No. 9. Septiembre. Pág: 28-31. 1985.
- 27.- Servicios Especiales en Nutrición Animal. S.A. C.V. "Editorial del producto K-6 en aves de postura." 1985.
 - 28.- Unión Nacional de Avicultores. Boletín. Vol. 5. Julio. Pág: 7. 1988.
 - 29.- Unión Nacional de Avicultores. Censo Avícola. Junio. 1994.